U.S.-based biotechnology company White Dog Labs (WDL) has announced that independent testing by the Center for Aquaculture Technologies in Canada (CATC) has demonstrated the potential benefit of ProTyton, a single-cell protein (SCP), to shrimp farming. 
Three researchers at Norwegian salmon and trout farming company Cermaq will be defending their doctoral degrees this fall.
Research efforts are underway in Canada to look at how epigenetics may have the answer to improving salmon survival rates in hatcheries.
The national office of Sea Grant has announced $11 million in grants for 22 projects across the United States with the goal of advancing the development of a sustainable aquaculture industry in the country. Aquaculture is a $21-million industry in the state of Wisconsin where the University of Wisconsin Sea Grant Institute was one of the Sea Grant programs selected for the funding. The Wisconsin project, “Overcoming barriers to support the growth of land-based Atlantic salmon production in the Great Lakes region,” will receive approximately $245,000 in federal funds during its first year, according to a release from the Wisconsin Sea Grant website. The total budget for the two-year project, including both federal and non-federal matching dollars, is approximately $773,000. Researchers will focus on two key issues that have hindered the continuing growth of the land-based salmon industry in the United States: fish health and fish flavour. “Land-based salmon aquaculture is growing by leaps and bounds in North America. This research study is very exciting because it is really going to help the industry,” said Greg Fischer, facility operations manager at the University of Wisconsin-Stevens Point Northern Aquaculture Demonstration Facility. “We are working in close concert with private partners that are doing this type of aquaculture right now.”Researchers say the farmed salmon must have a “flawless” flavour profile to fix the flavour problem with some farm-raised salmon tasting “off” or musty, the article states. “This project will help to ensure that Atlantic salmon harvested have the very best flavor profile: succulent, buttery-rich and mild,” said Dr. Steven Summerfelt, chief science officer at Superior Fresh,the largest Atlantic salmon aquaponics facility in the world.The impact of the research is expected to go far beyond the Wisconsin market.Read the full story here.
Shrimp farming practices have improved over the past 18 years such that imported shrimp no longer deserve their bad reputation, a study says. Professor Dave Little and Dr Richard Newton, of Stirling’s Institute of Aquaculture found that shrimp have become much safer to eat as exporting countries meet the safety demands of importers more effectively.   The team, which included researchers from the Shanghai Ocean University, lamented that imported shrimp is still seen as being of low quality by some consumers and this is sometimes reflected in the mainstream press, and on the internet. "Imported farmed shrimp are no less safe than any other seafood product,” said Dr Newton. “Consumers would need to eat more than 300g of shrimp per day to exceed the acceptable daily intake for antimicrobials.” The study team reached their conclusion after examining 18 years of data in EU’s Rapid Alert System for Food and Feed. They found that the number of “alerts” about imported shrimp declined significantly despite the rise in volume in shrimp imports. Almost 80 per cent of the world’s farmed shrimp comes from the waters of China, Thailand, Vietnam, Malaysia and Indonesia, according to the UN Food and Agriculture Organization.
Humane production practices can play a key role in expanding the market for farmed fish and seafood in the US but it is vital that consumers are aware of them, says a study.“Adopting humane practices in aquaculture and avoiding the use of antibiotics directly addresses consumer concerns about eating more fish and seafood. Humane slaughter practices may even make farmed fish and seafood more attractive than wild-caught choices,” says Arlin Wasserman of food industry consultant Changing Tastes, which co-authored the study with market research firm Datassential. The study, Humane Aquaculture: Opportunities on the Plate, says humane production practices influence the choices of both the US consumer and also individuals responsible for menu and purchasing decisions in the US foodservice industry.The study found that half of consumers and half of decision makers on what goes on the menu are more likely to purchase fish and seafood that is humanely harvested. More than half of all consumers and decision makers also believe that humanely produced fish and seafood is likely to be higher quality, taste better and have better texture.“Increasing the attractiveness of farmed fish and seafood can create meaningful opportunities over the next several years,” says Wasserman.   In an earlier study, Changing Tastes found that US consumers are on trend to reduce about 20 percent of beef consumption by 2025 because of animal welfare issues and antibiotic use. They plan to replace it with fish and seafood.“US consumers now have the same concerns about eating fish and seafood, probably because of what they know about meat and poultry,”  says Marie Molde of Datassential.Here are the other findings of The Humane Aquaculture study:•    US consumers and decision makers are most aware and concerned about live slaughter and antibiotic use for both wild capture and farmed fish•    Consumers are much less aware of other production practices, like stunning, transport, and clipping. Consumer and operator concern about humane treatment increases once they become aware of these practices“While adopting humane practices and eliminating antibiotic use can improve the US market for fish and seafood, not making improvements may pose a risk to the industry’s reputation and the appeal of farmed fish and seafood,” Wasserman added.
Japanese researchers accomplished the complete cycle of culturing eels for the first time in the world in 2010 and now they're making efforts to make the technology commercially viable.To put the technology to commercial use, scientists at the Research Center for Self-Sustained Eel Culture in Japan are looking into whether artificially developed young eels, known as elvers, can be raised to adulthood in farming pools just as in ordinary culturing methods where caught juvenile eels are raised in pools, reported The Asahi Shimbun.They distributed a total of 300 elvers to two private farming companies, where they will be raised under different conditions until they grow enough to be shipped.“Through the commercial farmers’ pool cultivation processes, we will see what kind of challenges remain in connection with eels’ food, the farming environment and other factors,” Keisuke Yamano, 54, director of the center, was quoted as saying.
A new study focused on Sydney rock oysters has found that the oysters are getting smaller due to coastal acidification.A Natural Environment Research Council (NERC) study carried out by Scottish and Australian scientists at two commercial oyster farms in Wallis Lake and Post Stephens, both in the mid-north coast of New South Wales, confirmed that the oysters’ diminishing size and falling population is due to acidification from land and sea sources. While the Sydney rock oyster research project focused on Australian aquaculture, lead author Dr Susan Fitzer warns that seafood lovers around the globe could begin to find smaller and smaller oysters on their plates because of the increasing acidity of seawater.“The first thing consumers may notice is smaller oysters, mussels and other molluscs on their plates, but if ocean acidification and coastal acidification are exacerbated by future climate change and sea level rise, this could have a huge impact on commercial aquaculture around the world,” said Fitrzer, a NERC Independent Research Fellow at the University of Stirling in Scotland.Increasing amounts of carbon dioxide (CO2) in the atmosphere from fossil fuel combustion, land-use change and other human activities result in increased CO2 being absorbed by the ocean.  That combination of CO2 with seawater makes the water more acidic, said another study, The US West Coast Shellfish Industry’s Perception of and Response to Ocean Acidification.
The USDA is funding a study that seeks to find out what causes Vibrio levels to rise in farmed oysters, a bacteria that causes foodborne illnesses in people who eat raw or undercooked shellfish. Dr Bill Walton of Auburn University will focus his study on oysters raised using off-bottom farming technique. The technique involves raising the baskets of oysters from the water once a week to air-dry them to prevent barnacles and other invasive species from attaching themselves to the oysters. Walton will find out whether an oyster farm’s geographic location, handling practices, and choice of equipment affect Vibrio levels in these oysters. “Through his project, Walton should generate valuable data for Gulf Coast oyster farmers, who focus on producing exceptional oysters for high-end markets, such as upscale restaurants that offer the farmed bivalve mollusks on the half shell,” Auburn University said in a press release. The USDA has given more than $450,000 for the three-year research project.
Researchers at the University of Stirling in Scotland have launched a study to look into the effects of a camelina-oil-based diet on farmed Atlantic salmon.The farmed salmon will be fed a new feed solution that contains oil extracted from camelina crop that was genetically modified make health-beneficial Omega-3 fish oils. Current industry practice involves feeding farmed fish with feed containing marine fish oil, sourced from the sea, and vegetable oil. Supply from the wild fisheries is, however, unsustainable.The new study will determine if Omega-3 fish oils coming from the GM camelina plant will be a worthwhile substitute. The researchers will compare the performance of the fish fed the new feed solution in terms of weight and growth of the fish, with farmed salmon fed a standard diet.  They will also compare their tissue and molecular samples.Plant scientist Professor Johnathan Napier, who developed the GM plants at Rothamsted Research, and fish nutritionist Professor Douglas Tocher, of Stirling’s Institute of Aquaculture, will jointly lead the study. Dr Monica Betancor, a Research Fellow at Stirling, will also play a crucial role by checking on the health of the fish and collecting data.The potential for using Camelina sativa as a substitute for fish oils and fishmeal in aquaculture feeds has been explored in recent years. In April 2017, the Canadian Food Inspection Agency approved mechanically extracted camelina oil for use as a feed ingredient for farmed salmon and trout.
A startup is developing fish feed ingredients derived from black soldier fly (BSF) that will not only provide fish with sustenance but also boost their health and overall wellbeing. Entomics Biosystems Ltd of Cambridgeshire, England says merely drying insects (in this case BSF) and milling them into powder misses many of their potential nutritional, health and wellbeing benefits. A proprietary bioprocessing technique that Entomics developed, which it calls "metamorphosis," boosts the nutritional and functional benefits of such insect-derived feeds. "There are several benefits to this process," explains Miha Pipan, Chief Scientific Officer and company co-founder, in an article published in the University of Cambridge website. Benefits range "from affecting the gut's microbiome and trying to preserve a healthier bacterial community there, to training immune systems to make livestock more resistant to disease challenges and at the same time reduce the need for veterinary medicines, antibiotics and vaccines.” “We are currently focusing our efforts on developing functional insect meals for Atlantic salmon (Salmo salar), in particular in our meals' ability to stimulate salmonid immune system strengthening and overall wellbeing,” said the Entomics team, whose members are University of Cambridge graduates. They are currently working with partners including the University of Stirling to validate and test their products in the field. Entomics CEO and co-founder Matt McLaren noted how the world is looking for more sustainable sources of feed. “I think increasingly there's a recognition that it's not just about basic nutrition, but it's about overall health," he says. "We're trying to take a promising, sustainable ingredient of the future – these insect-derived feeds – and trying to add a bit of biotechnology or science focus to it, to really enhance what the effect is in the end application and reduce reliance on traditional antibiotics and veterinary medicines." There are several efforts currently looking into developing fish feed out of BSF because fish feed derived from fishmeal is deemed unsustainable.
Financial support for projects that improve fishing and farming systems globally is available from Sea Pact, an innovative alliance of seafood industry leaders.The group said projects that are in line with Sea Pact’s mission and fall within the following 12 broad categories are prime for consideration:Gear or Farm ImprovementsSpecies Research and Data CollectionResearch to Improve Farming Practices Fisheries ManagementRegional Aquaculture ManagementTechnologyFishery Habitat Restoration Wild Stock EnhancementFisheries ConservationFisheries Improvement ProjectsAquaculture Improvement ProjectsCommunication/Education“Preferential consideration” will also be given to projects in the areas of:•    social responsibility •    aquaculture •    fisheries management •    traceability •    special species of interest: squid•    special regional area of interest: Great Lakes freshwater fisheries Initial Letters of Interest from those who want to apply for funding are due by 20 August 2018. Select organizations will be asked to submit full project proposals around mid-September, with Sea Pact aiming to announce its grant recipients in late 2018. Application guidelines can be found here.
Salmon farmers in British Columbia emit a barely visible carbon footprint, as B.C. Salmon Farmers Association (BCSFA) executive director John Paul Fraser wrote in his recent editorial in the Vancouver Sun.
Oslo, Norway-listed land-based salmon farming company Atlantic Sapphire has placed its first commercial batch of 400,000 salmon eggs into its Bluehouse hatchery in Miami, Florida.
To help celebrate the launch of the International Year of the Salmon (IYS), the North Pacific Anadromous Fish Commission (NPAFC) held the IYS Photo Challenge in the North Pacific from Sept. 1 to Oct. 31, 2018. On Nov.14, 2018, the NPAFC announced the winner of the Photo Challenge – Fernando Lessa, a resident of North Vancouver, British Columbia, Canada.
The Pretzer family farm goes back to the 1940s, producing crops and livestock in the community of Diller, Nebraska. But a little over a year ago, Scott Pretzer decided a disused pig barn was an ideal site for his Pacific white shrimp project. Today, Rock Creek Shrimp stands as a unique producer in a state better known for corn, beef or wheat.
La-Paz, Mexico-based marine fish producer The Kampachi Company announced on Monday that it is closing an equity investment from asset manager Althelia Funds’ Sustainable Ocean Fund (SOF).
AquaBounty has joined forces with Aquaculture R&D company, The Center for Aquaculture Technologies (CAT), to apply CAT’s patented sterility technology in AquaBounty products. The decision means AquaBounty will be moving from using triploid induction technology to gene editing to ensure fish sterility. The two companies signed an agreement whereby both will co-fund CAT’s research which is using gene editing to produce a sterile finfish for use in aquaculture. CAT will hold the patents and AquaBounty will receive a non-exclusive, royalty-free, license to those patents and the technology. The development work will be performed at CAT’s facility in San Diego. “We are delighted to work with AquaBounty to develop this technology and realize its potential in aquaculture,” Dr. John Buchanan, chief executive officer of CAT. “Although AquaBounty has been very successful in routinely achieving levels approaching 100 per cent sterility using triploid induction technology, we are very pleased to be working with CAT and using their innovative gene editing approach to ensure 100 per cent sterility genetically,” said Ronald Stotish, chief executive officer of AquaBounty. “Sterility of farmed fish has many environmental and production benefits and we believe this project has a broad range of potential applications in the industry.” CAT operates two laboratories: its research hub in San Diego, Calif., and the world’s only Level 3 certified pathogen containment, private aquaculture research facility located on Prince Edward Island in Canada. Owing to the expertise of its team and the unique versatility of its labs, CAT is enabling the aquaculture industry to achieve efficient production growth without endangering the natural environment.
When Aquaculture North America (ANA) first asked me why my family got involved in farming seafood on land using recirculating aquaculture systems (RAS) and what potential benefits we saw, I had to take a step back because not only are there multiple levels to the answer, the answer has also been evolving over time as we continue learning about RAS.
Seventy-two percent of the 30 fish processing facilities audited in British Columbia are not compliant with permit conditions and the province says there is a need to strengthen requirements for fish processors in order to protect the marine environment. The sector-wide audit was conducted after the online publication in November of a video by diver Tavish Campbell that shows fish blood and waste being pumped out of a salmon processing plant in Brown’s Bay near Campbell River. Results of the audit, released on Wednesday, shows the majority of non-compliances with permit conditions were administrative, such as failing to post signage, but there were a few fish processors that exceeded volumes and the quality of fish processing effluent discharged, than is allowed under their permits. “This audit clearly tells us more work needs to be done to ensure our coastal waterways are safe for all wild fish stocks,” said George Heyman, Minister of Environment and Climate Change Strategy. “The industry has been largely operating under an outdated permitting regime, going back several decades. We are taking immediate steps to ensure permits are updated and strengthened at fish processing facilities throughout BC.” The ministry recommends modernizing existing permits to include additional environmental protection provisions, such as more rigorous discharge requirements and increased monitoring, and requiring fish processing facilities to update their update their standard operational procedures to reduce the volume of effluent discharged into the environment.
Salmon and trout producer Cermaq has released its quarterly sustainability results on key indicators related to fish health for the first quarter of 2018. The company said the key takeaway on sustainability performance from the quarter includes survival rates spanning from 92.5 - 97.3 percent on a 12 month rolling basis, with the highest level achieved for trout in Chile. In fish health performance, use of antibiotics in Q1 was reduced by 70 percent in Chile compared to the same quarter last year. In Canada, the use was “further reduced” to 9 grams of antibiotics per tonne of salmon harvested within the quarter. The fish harvested by Cermaq Norway in the quarter did not receive any antibiotics, it added. Average sea lice levels at Cermaq sites worldwide were within regulatory limits, “with the exception of a few sites in Canada where the levels exceeded the regulatory limit and have continued doing so,” said the company. It added that the situation “is being addressed by all available means, including early harvesting and by treatment with hydrogen peroxide.” Cermaq also reported one incident of escapes in Chile, where 6,284 fish, weighing 2.9 kg each on average, escaped its operations due to ripped nets. The company started publishing quarterly sustainability results in early 2016.
The Norwegian Government rejected a giant fish farm concept to be housed in what could have been the world’s largest ship because the idea was not innovative enough.
Viewed by locals as “dirty trash fish,” a non-profit helps tilapia win the hearts and minds of HawaiiansThere has been no stopping the success and progress of Kohala Mountain Fish Company (KMFC) in Kapaau, Hawaii since operation began in late 2014. The operation is situated on, and jointly owned by, the Kohala Institute. The not-for-profit institute promotes connection to traditional Hawaiian lands and their sustainable use, with the goal of creating a better world. Before KMFC got going, tilapia farming in the state was extremely limited, notes KMFC General Manager/Head Biologist John Oliva. “Tilapia in Hawaii did not have a very good reputation,” he explains. “It was viewed as a dirty trash fish… It has taken some work by KMFC and others like Denise Yamaguchi from the Hawaii Food and Wine festival to win hearts and minds here. Our products have received much praise in the marketplace for their presentation, flavor and fat content, allowing us to get a higher market price from the target customer base.” Currently, Kohala supplies whole fresh fish to distributors in Oahu and to restaurants as far away as New York. Eco-friendly In harmony with the values of the Kohala Institute, the operation is designed to be as environmentally friendly as possible. Tilapia was chosen as best for integrating with all the sustainable aspects of the Kohala operations, in addition to being the most easily acquired and easy-to-rear fish, with a fast growth rate and great market versatility. Water for the fish is sourced from a spring inside nearby Kohala Mountain and after flowing through the fish farm, it’s filtered through water cress tanks and settling ponds before moving into various gardens and macadamia nut orchards. Fish farm sludge is composted with processing waste and Institute green waste to fertilize cattle pastures. KMFC uses a batch harvesting method and a stocking density of 60 kg/m3, with egg-to-harvest timelines of six to nine months. The hatchery has 10 recirculating 600-gal round broodstock holding tanks, three 1,000-gal spawning tanks, 12 McDonald upwelling hatching jars and 24 self-contained 150-gal fry-rearing tanks. The nursery consists of 36 1,000-gal round tanks on three recirculating systems. Grow-out occurs in 47 30,000-gal round tanks, operating as completely flow-through to completely recirculated. No antibiotics or other substances are used to farm the fish, and the feed is all “certified sustainable” from Ewos. Oliva’s relationship with Ewos began over a decade ago when he was the manager of a salmon hatchery in Alaska. There he found Ewos outperformed other feeds and he formed a great relationship with the Ewos feed rep. He says all the Ewos feeds have been useful at KMFC, but especially the #00 micro diet. “[It] has reduced mortalities in our swim-up fry (first feeding) by about 50 percent over the #0 feed and…a doubling in growth rate.” It’s in KMFC’s feed trials in the grow-out phase, however, where Oliva says Ewos’ knowledge in fish nutrition and feed manufacturing has been particularly valuable. KMFC’s fish are red tilapia, and in Oliva’s words, “we wanted something that would make their color pop. We had Ewos add some astaxanthin to the feeds, which has the additional benefit of providing antioxidants to the diet. The fish responded beautifully with color and vigor.” A colour change in the flesh (desired by some customers) is achieved through longer feed duration and higher amounts of astaxanthin. KMFC’s latest trial involves feed higher in protein and fat to produce fish that really smoke well, and initial results look promising, Oliva says. Farm-to-market It was critical from the start for KMFC to be an integrated operation — from egg to processing — because Hawaii has strict importation rules, Oliva adds. This arrangement also circumvents the increasing threat of tilapia lake virus (TiLV) reaching the islands. Having a processing facility is “necessary to be able to sell and market the amount of tilapia we are producing and will be producing,” says Oliva. “We have 1 million lbs of fish ready now and we hope to have at least moved 3 million lbs through the system by years’ end. With the completion of our fish processing facility slated for March, we will be looking to bring our satellite co-op farms on board. We provide the technical and biological expertise, the seed stock and feed to the farmers, so we will be able to control the quality and consistency.”  In addition, KMFC will expand its hatchery and nursery, and add 40 more grow-out tanks. The firm will start shipping its production to mainland wholesale distributors and also start producing whole frozen fish and fillets (including a very small frozen fillet for the USDA farm-to-school program). “We even have interest in our product from buyers in South Korea,” Oliva reports.     Over his nearly 30 years in aquaculture, Oliva has seen consumer attitudes fluctuate, and notes that the times where consumer perception is down were usually a result of unsubstantiated rumors started by a person or group with an agenda. When a fish farmer or the industry in general can address legitimate concerns with scientific truth however, he notes public attitudes become positive. Oliva believes the future is bright for aquaculture as the need for healthy, sustainable protein grows.
Over the past 14 years, the aquaculture industry has seen a roughly 80-percent decline in the amount of pond space dedicated to catfish, from a peak of around 80,000 hectares in 2002 to about 25,000 hectares in 2016.
Mussels are being wired with sensors on Canada’s East Coast to monitor water quality and potentially protect marine life including salmon.
The shellfish industry in British Columbia has at least two very happy people this fall. Carl Butterworth is the manager of the Vancouver Island University’s (VIU’s) Deep Bay Marine Field Station and Dr. Tim Green is the new Canada research chair in Shellfish Health and Genomics at the Deep Bay station.  
A nutrition researcher says human diet needs more shellfish because it has some of the most important essential nutrients humans need.Professor Baukje de Roos, deputy director of the Rowett Institute at the University of Aberdeen in Scotland, discussed the major health benefits of seafood and highlighted the contribution of shellfish to a healthy diet at the conference of the Association of Scottish Shellfish Growers in Oban, Scotland.Mussels, oysters, and king scallop roe contain Omega-3 levels between 1.1 and 2.4 grams per 100 grams of flesh, similar to oily fish such as mackerel, herring, and salmon, de Roos was reported as saying by Seafoodsource. Omega-3 fatty acids help to protect against stroke and lower the risk of mortality from coronary heart disease. “Micronutrients such as selenium, iodine, and zinc are also found in abundance in shellfish and all have important functions,” de Roos said. “Oysters in particular are high in zinc and would be a good addition to the diet of anyone aware that they have a deficiency.”Two trace elements commonly found in shellfish--cadmium and lead--were also found in increased levels in humans following increased consumption of mussels, but these were well below hazardous levels, even with three portions per week, said the report.
The future of oyster growers in Southwest Washington is in question after they were barred from using an insecticide deemed the only practical way of addressing a pest.Dr Kim Patten, Washington State University Extension horticulturist, made the comment to Capital Press after the Washington Department of Ecology denied the Willapa Grays Harbor Oyster Growers Association the permit to spray 500 acres with the insecticide imidacloprid. Ecology says the pesticide is “too risky for Washington’s environment.”“I don’t see anything else on the horizon that will work at the level growers consider useful,” Patten told the publication. “One of the real threats is the loss of family farms.”Patten echoes the sentiments of Willapa Bay shellfish farmer Brian Sheldon. Sheldon earlier told Aquaculture North America that there’s nothing else that works against burrowing shrimp as well as imidacloprid. The pest destroys not the oysters themselves but their habitat.“We’ve spent many years to find an alternative, everything from mechanical methods where you basically destroy the ground to get to the shrimp and we tried different culturing methods like off-bottom — that will buy you some time but eventually the shrimp density get so large that the structure to support that culture technique fails,” he said.
Maryland has increased public access to information on proposed shellfish tenures by posting pending commercial shellfish lease applications on the state government website. The new set of online tools is aimed at helping educate and engage the public on proposed aquaculture lease applications. The tools include a dynamic database and email notification system managed by the Maryland Department of Natural Resources.The tools were launched following consultation with aquaculturists, commercial watermen, community and county leaders, homeowners associations and others throughout the Chesapeake Bay. “During our state-wide listening sessions, we heard time and again that community leaders wanted to be alerted about proposed aquaculture projects earlier in the permitting process,” Fishing and Boating Services Director David Blazer said. “The new early notification system will provide near real-time data on all future aquaculture lease applications as well as information on location, status and type.”Commercial shellfish aquaculture lease applications received since January 1, 2018, and determined to be complete, will appear on the database. “An application’s designation as ‘complete’ does not mean that it is approved. All proposed leases are subject to change throughout the permitting process,” the Department of Natural Resources said in a statement.
A tool that would detect norovirus in oysters prior to harvesting could be in the market by Spring of 2019. Dr Jim Powell, CEO of the BC Centre for Aquatic Health Sciences in Campbell River, British Columbia, is developing the new tool. Powell says growers often don't know if their oysters are contaminated until after the shellfish are harvested and packaged. He hopes the molecular detection tool will help prevent the spread of the illness and reduce the financial impact on growers if farms are closed due to norovirus, CBC News reported.
The Panacea Oyster Co-op is a collaborative enterprise borne out of a desire to strengthen and revitalize oyster farming in Florida’s Apalachee Bay and other parts of the estuary. By bringing together individual  farmers to work towards a common goal, the co-op has brought its members collective benefits. Its efforts are paying off, for the co-op has been championed by US sustainable seafood investment forum, Fish 2.0.The co-op was formed two years ago by a group of classmates at the Wakulla Environmental Institute’s Oyster Aquaculture program. While working on separate aquaculture operations, an Australian equipment supplier suggested that they consider forming a cooperative. It didn’t take much convincing; the group voted Rob Olin as CEO and, later, as chairman of the board.“We just cobbled a team of very diverse but incredibly talented professionals together for the business side,” says Olin. “I think we’ve attained our goal, which is to provide our members with everything they need — support in terms of accounting, legal, finance, operations, and advertising and marketing.  So all they have to worry about is growing the perfect oyster. We now have a pretty substantial juggernaut.”A for-profit co-opThe co-op provides seed, ongoing training, technology and a guaranteed place to sell their product, at a guaranteed price. They also help them make effective business plans. A key difference with many co-ops, Olin notes, is Panacea’s for-profit nature. “We have to have investors to build the infrastructure we needed. We have to have enough money to buy the marina to house everything. We had to have an actual structure for a USDA loan, so in that way we’re different.”As CEO and chairman, Olin is the decision-maker for a lot of day-to-day issues, however, larger questions regarding operations or philosophical changes are made with the 30 members of the co-op. The rancher members and the board of directors both meet once a month, in additional to an annual shareholders’ meeting.  “We’ve been able to enhance the rancher’s performance by way of the financial allowance and economies of scale that we bring to the table,” says Olin. “This is brand new. And like anything you do that’s brand new, it’s like walking into a hotel room when the lights are off. You stumble around and you find your way and you start to get a rhythm, then you start to elevate your performance, and from that elevation you move on to perfect performance. We’ve been able to cover so much ground as a team that we could never have gotten done as any one individual.”The co-op also benefits from their location, next to Florida’s Spring Creek, the largest freshwater spring in the world. The pure spring water flows through and mixes with the saltwater, making up North America’s most diverse estuary. Olin says this allows for algae to thrive, which feeds the oysters and allows them to grow more quickly. The location also has two tides per day, which keeps nutrients moving in and out.“When you’ve got oysters that rely on filtering more than 50 gallons of water per day, giving them the mega nutrients that our waters do, that allows them to grow faster than anywhere else on the planet.” The farming operations are centered around the Apalachee Bay, which is part of the same estuary as the Apalachicola Bay. Farmers in the Apalachicola Bay harvested as much as 100 million oysters per year five years ago, but this has gone down to less than five million now. Olin hopes Panacea’s efforts to resurrect the oyster industry in Apalachee Bay will inspire farmers in the Apalachicola Bay.“We’re putting the money, capital and effort back into building the infrastructure into Apalachee Bay,” says Olin. “Hopefully folks in Apalachicola Bay will see the magic that happens from this reintroduction of oysters – a totally different way to harvest and they’ll embrace it and start doing it over in their own bay and bring back that incredible potential that they once had.”Panacea Oyster Co-op was one of the winners of the recent Fish 2.0 competition. The co-op’s ability to  organize people and motivate them to commit to a shared endeavour has been a key factor behind its win, says Olin. Part of the appeal for many in the oyster farming industry is the independence and freedom it allows, but the co-op has convinced its members to give up some of that freedom for the greater good.“It’s kind of like the old west,” says Olin. “You’ve got a bunch of independent water cowboys and cowgirls. They can make their own agenda for the day because they can adjust to the tide, wind, temperature and current. They don’t especially like to be collaborators or joiners. But here, because the old ways—commercial fishing and commercial oyster harvesting—were gone forever, they saw hope in this new technology, this new way of doing things. And they committed, even though it went totally against their natural instincts and they’re building something much bigger than themselves.”VisionThe goal of the co-op is to establish their model as a prototype that can be adapted in different areas, either as satellite operations, or the co-op can provide its services as mentors and consultants. The important thing is to help the industry get firmly established. Oysters are the ideal panacea not only to help supply the world’s growing need for food but also to keep the waters healthy, says Olin. “Oysters are essential for the survival of 3,000 aquatic species. They’re the original filters in the aquarium. Take the filters out, the aquarium dies. Put the filters back, the aquarium comes back to life. The best thing we can do is put filters back in the aquarium. The best way to do that is through aquaculture. The best way to make sure coastal communities see it is through this collective collaboration of a co-op.”
New Brunswick’s oyster exports grew 18.6 percent to $5.8 million in 2017 from the previous year, continuing the industry’s rally. Overall industry growth was at 57 percent over the past five years, measured in terms of oyster bags in water, which in 2017 was at 518,000.  
A probiotic supplement that has been proven to boost larval oyster survival by 20 to 35 percent is ready for manufacturing but the path to commercialization may not be that easy.Probiotic OY15, a benign strain of Vibrio bacteria found in the oyster gut, was developed by microbiologist Diane Kapareiko and her team at NOAA Fisheries Milford Laboratory in Milford, Connecticut. Their goal was to help oyster hatchery managers boost the survival of Eastern Oyster (Crassostrea virginica) larvae and seed, and improve their defenses against bacteria.It is a promising drug, but Tom Hashman, director of business development for Envera, said there are hurdles for getting the Food and Drug Administration to approve any probiotic, and a Vibrio-based bacteria might present additional hurdles. While this particular Vibrio strain is confirmed benign and has shown it can be a “good” bacteria that boosts the oyster’s immune system and is safe for humans to handle, harmful Vibrio strains known to be human pathogens can cause serious illness and be fatal if an immune-compromised person ingests them or is infected through a cut in their skin while swimming in seawater.  Kapareiko says a partner is now being sought to produce the probiotic on a commercial scale.  “If it were to go commercial, in a perfect world, if we had a company that said yes and went forward with commercializing it, it could possibly be another couple of years before it reaches the market,” she said.
New Brunswick’s oyster farming industry has grown 57 percent over the past five years due to the mechanization of farming processes and access to funding, according to Marie-Josée Maillet of the Department of Agriculture, Aquaculture and Fisheries.
Shellfish farmers in British Columbia faced an interesting problem in 2017: there was more demand than they could supply. “All production was spoken for, no farmer had any problem selling his shellfish. The biggest problem was producing enough to meet the demand,” says Darlene Winterburn, executive director of the BC Shellfish Growers Association (BCSGA). Behind the industry’s struggle to meet demand is the regulatory process for assigning, modifying or expanding tenures for shellfish farms. The lengthy process limits industry expansion and it is a challenge that the association continues to work towards a resolution. “The government came up with a new harmonized form this year, we’ll see how that works out,” says Winterburn. “We’re hopeful that it will be a positive change. We’re working with the government on addressing problems because we are limited in our ability to expand production. It also raises issues around the level of security that people have when investing in infrastructure to increase their production. But everybody is working together.” 2017 began with a significant challenge as the winter season saw an outbreak of norovirus. The British Columbia Medical Journal eventually attributed that outbreak to sewage-related contamination spread by ocean currents. Winterburn says the association worked with all levels of government to address the issue. A working group including the BCSGA, government and other stakeholders modified the Canadian Shellfish Sanitation Program to include site response measures, including temporary shellfish closures. The program is run by the Canadian Food Inspection Agency. “With that, there has been a broader awareness of the importance of clean water to produce healthy animals, which are critical to a healthy people and a healthy planet,” says Winterburn. “Safety of our products is a top priority and, as an industry, we do everything we can to ensure that.” The installation of a “Burke-o-Lator” water-quality monitoring device in Baynes Sound was another positive development for the industry. The device collects real-time ocean acidification data, enabling shellfish farmers to make informed decisions on when to grow larvae, when to set juvenile oysters out into the field, or when to draw the thousands of gallons of seawater they need to fill their tanks, for instance. The project is a joint effort between BCSGA and the Vancouver Island University. Live feed of data is open to the general public. “This is going to provide really strong foundational data that pertains to environmental intelligence in Baynes Sound and it’s going to be key for all sorts of science,” says Winterburn. “It’s going to be quite invaluable as we’re looking at global issues as well as industry-specific issues.” Another challenge that the association is addressing is debris from shellfish farms that strong winds cast out into the ocean. As earlier reported in Aquaculture North America, BCSGA led a “Turn It In Week” over the summer, where the association and partners set up large bins in strategic locations around the province, enabling farmers to easily dispose disused equipment and other refuse from their farms. BCSGA also collaborated with Fisheries and Oceans Canada (DFO) to organize a beach clean up on Denman Island and other beaches in the area. “We still have some work to do, but the vast majority of our farmers are quite responsible,” says Winterburn. “While they’re out doing their business, whether they’re on the farm or travelling back and forth, debris is an issue. They’ll stop and pick it up, they want to make sure that their beach is in a good state of care. As an association, we encourage our members to be good neighbours.” Other issues that the industry faced in 2017 included feed availability, high cost of equipment and the need for more research on production. The association is addressing these through collaborations with the Hakai Institue and the Vancouver Island University. “People are being really proactive to expand our capacity and to work through some of our issues,” says Winterburn. “We have no problem selling the product we have – there’s a shortage of product. What we need are ways to enhance our production and to do that we need to overcome these challenges. If we’re able to jump those hurdles, the potential is limitless.” (This article was originally published in the Mar/Apr 2018 issue of Aquaculture North America.)
Connecticut's shellfish industry has grown drastically, with all indications showing that trend will continue. A report from the University of Connecticut, sales between 2007 and 2015 increased by nearly 100 percent, to a value of nearly $30 million in 2015. Connecticut Sea Grant, meanwhile, is conducting a more comprehensive study into the state’s industry, which will be completed by October this year. Every five years, the University of Connecticut conducts an economic assessment of the entire agriculture industry, taking raw harvest data and estimating the multiplier effects on the economy. It also looks at direct sales, jobs and how that revenue plays out in the local and state economy. “There’s been a gradual increase in oyster production,” says Tessa Getchis, aquaculture extension specialist and educator with the Connecticut Sea Grant and UConn Extension Program. “We had a disease event in the late’90s that wiped out most of our oysters. We saw a slow recovery at first and now a more rapid recovery.” Getchis says increased diversification of operations and techniques have helped strengthen the industry. While a large portion of the industry continues to harvest seed from natural, public oyster beds, some use the remote setting technique of oyster seed production when natural seed supplies are not available consistently. The state has also seen the industry diversify into container culture, where producers utilize flip bags or cages rather than traditional beds. These tend to be smaller operations, but still important to the growth and health of the industry. “A volume of shellfish is still coming out of those natural beds, but the diversification is coming from these smaller operations that are located near shore and are using different types of gear to grow oysters,” says Getchis. “We’ve had a lot of interest in that, and it is poised to scale up.” Connecticut Sea Grant’s study into the industry is tied to the Connecticut Shellfish Initiative, which aims to grow all of the shellfish sectors in the state. Getchis says that they are collecting information about jobs, harvesting areas, types of gear used and other information to create a baseline to inform the growth of the industry. “It’s a plan that was developed by interested parties, a public process and an evolving process,” says Getchis. “Things that were important a year ago when we created the plan may not be as important now or may have already been addressed. There are new challenges that arise and new opportunities. It’s a living document and we’re working on the implementation of the plan.”
In the latest push to perfect the technology to make eel farming commercially viable, Japanese scientists are looking at "marine snow" as potential diet for the slippery creature.The so-called marine snow is the decaying sea detritus – comprised of dead plankton and other decaying organisms – found at the bottom of oceans. If baby eels, or elvers, could survive on this diet harvested from the sea, that would be the next breakthrough in the efforts toward commercial production of fully farmed eels, says Prof Takashi Sakamoto of Tokyo University of Marine Science and Technology. Japan is on a quest to make eel farming – from egg to maturity – commercially viable. The nation is the world’s largest consumer of the slippery fish but shortage of eel from the wild has caused a spike in prices. Original report can be found here.
Cargill’s efforts to develop a new type of canola oil for use in fish feed has come to fruition with the launch of Latitude, a fish oil alternative that provides long chain Omega-3 fatty acids for aquafeed. The feed producer launched the product today, but it will be commercially available only in 2020 in Canada and Chile. “Latitude is 100-percent traceable since it manages the supply chain from the canola seed to crop cultivation and oil production—and industry-first for a product of this kind,” Cargill said in a statement. Canola is a vegetable oil derived from rapeseed, which is rich in the marine fatty acid DHA. Researchers at the Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) said preliminary results of their study show Omega-3 oil derived from canola is safe to use as ingredient in salmon feed. “The growth in aquaculture production brings an increase in demand for Omega-3s,” said Willie Loh, vice president of market development for Cargill’s global edible oils business in North America. “With Latitude, Cargill is combining our aquaculture expertise and canola innovation capabilities to help meet that demand using plant-based Omega-3s in aquafeed, instead of relying on fish oil from over farmed oceans. Latitude will help relieve some of the pressure on wild caught fish, while delivering a reliable Omega-3 product to aquafeed manufacturers – a win-win for the industry.”
In one of several new initiatives to develop more sustainable live feeds for hatchery fish, a Norwegian company has developed a product that makes use of what is deemed as a burden to fish farms and shellfish farms alike: barnacles. The company, Planktonic AS of Norway, harvests barnacles from the ocean, extracts the eggs from inside the barnacles before they have the opportunity to start feeding, and then cryopreserves them. The cryopreservation process keeps them alive and disinfects them.  They are then packed into flasks. When this feed is to be used, it is thawed in seawater, and the barnacles then become "alive" again and therefore constitutes a natural feed for the juvenile fish.Commercial trials earlier this year showed 50 percent larger bream juveniles and 75 percent larger bass, better survival and improved resistance, reported the Global Aquaculture Advocate.
A company in Newfoundland hopes that access to feed specially formulated for sea urchins will change its luck. Green Seafoods did grow-out trials in 2000 but the biggest problem was securing the right feed to increase the roe (gonads) to a marketable size. Operations manager Mark Sheppard says the sea urchins they were raising ended up tasting like what they had just eaten, for instance, kelp or fish protein. With access to feed developed by Norway-based Urchinomics and Nofima, he hopes this second round of sea urchin grow-out trials will yield better results. The feed is special in that it holds its form in water for between seven to 14 days without dissolving, a quality important for urchins because they take a long time to eat. “We know that it works in the lab. We are going to do some full-blown commercial trials this fall,” he says.
Feeding farmed fish with live feeds that are nutritionally enhanced with nutrient-dense liposomes could become a reality sooner than later. Researchers at Oregon State University (OSU) have been studying ways to deliver water-soluble nutrients to aquatic organisms. The problem is that water-soluble nutrients can be rapidly lost from artificial feeds when they are added to the water, resulting in nutrient losses and poor water quality.Liposomes are microscopic particles that are constructed very similar to cell membranes. They are small enough to feed to rotifers and Artemia that are used as live feeds in marine finfish hatcheries. Importantly, liposomes very effectively retain water-soluble compounds when suspended in water. OSU researchers are exploring the use of soy-based liposomes for delivering essential nutrients to larval fish and other aquatic organisms.During his PhD studies, Dr Matt Hawkyard collaborated with researchers from Norway to develop larger scale batches of liposomes to match the scale of aquaculture production. Through feeding nutrient-dense liposomes to Artemia and rotifers, Hawkyard hopes that they can make a drastic impact on mortality rates and improve larval quality in the industry.“We can actually boost the level of, say, taurine, that we know is an essential compound, very much like amino acid, and we can boost those concentrations in rotifers to levels that are beneficial to fish,” says Hawkyard. “These [particles] are extremely efficient and deliver a pretty high payload.”Hawkyard says that after feeding liposome-fed rotifers to Northern Rock Sole larvae they found a tremendous impact on growth after a six-week feeding trial, compared to control groups. Since establishing the potential of the liposomes for such work with taurine, researchers have successfully utilized liposomes to deliver vitamin C, iodine, selenium and other nutrients.One of the key benefits of the liposomes is the prevention of nutrient leaching. One could achieve similar growth results through taurine by simply dissolving a great deal of taurine into rotifer water, says Hawkyard, however that would take 60 to 100 times more taurine because much of the nutrient doesn’t make it to the rotifer. Plus, the wasted nutrients provide a “broth” for bacteria.By improving the quality of live feeds, Hawkyard hopes that they are not only able to reduce mortality rates, but also malformation rates.“Even as we decrease mortality rates and increase survival, you see a pretty high rate of malformations in a lot of marine fish juveniles,” says Hawkyard. “Jaw deformities are really common in a number of species, and fin development and scoliosis – a wide variety of these kinds of physical malformations show up in the later phases. But they look like they’re related to things that are happening in the larval stage and, probably, a large number of that, or at least a fraction of those malformations are due to nutritional deficiencies or imbalances.”Going forward, Hawkyard says OSU are working on a few other particle types, including a complex particle where they are trying to integrate liposomes into a larger particle to feed directly to fish.
ADM Animal Nutrition launched at Aquaculture America a new protein source for aquaculture, called PROPLEX T. Composed of dried fermentation biomass, PROPLEX T provides a consistent source of digestible protein and high levels of essential amino acids for fish and shrimp. The company says PROPLEX T has proven to be a successful replacement for other protein sources, such as fishmeal, in diets for fish and shrimp. “PROPLEX T is a cost-effective protein source that can be used in place of expensive or variable protein products,” said Dr John Bowzer, aquaculture research scientist for ADM. “Additionally, PROPLEX T provides feed manufacturers with added flexibility in formulations due to its high protein content and favorable amino acid profile.”
Canola oil could someday become a common ingredient for salmon feed. At the moment, raising fish rich in Omega-3s means supplementing their feed with fish oil. Researchers at the Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) said preliminary results of their study show Omega-3 oil derived from canola is safe to use as ingredient in salmon feed. Canola is a vegetable oil derived from rapeseed, which is rich in the marine fatty acid DHA. Results of the Nofima study show salmon given feed containing Omega-3 Canola had the same Omega-3 levels as salmon fed with fish oil. Gene expression analyses showed that effects depended on the amount of oil, not the type of oil, the study says. Feed producer Cargill is developing a new type of canola oil for use in fish feed.
FeedKind protein, a new fish-feed ingredient touted to reduce aquaculture’s use of fishmeal, is expected to reach the market in 2019 once commercial production begins at Calysta Inc’s Tennessee facility.
The US aquaculture industry faces numerous hurdles: a negative image, a difficult regulatory environment and, crucially, a shortage of educated, skilled workers.
As aquaculture continues to produce an increasingly larger portion of seafood consumed in the world, it also becomes a larger and more lucrative market. In recent years that market has attracted the attention of a variety of big grain trading companies that have sought to diversify their products. Companies such as Archer Daniels Midland (ADM), Bunge Ltd and Terra Via shared with Aquaculture North America (ANA) why they wanted to become a part of the aquaculture market.
Ontario-based environmental monitoring company Hoskin Scientific has introduced Ohio-based water measurement solutions provider YSI’s latest optical dissolved oxygen (ODO) field meter.
Bühler Inc., has announced Andy Sharpe as its new president and chief executive officer as of Jan. 1, 2019.
Phibro Animal Health Corporation has a new North America Aqua Manager. 
Pranger Companies, an Indiana-based RAS consultant, has acquired an aquaculture design firm based out of British Columbia called PR Aqua. The company acquired the Canadian aquaculture design consultant from Pentair Aquatic Eco-Systems (Canada), Inc. Formerly PR Aqua Supplies Ltd, PR Aqua LLC produces integrated water treatment and fish handling solutions for a variety of applications, specializing in recirculating aquaculture systems (RAS). Pranger is an Indiana-based consultant and construction manager specializing in the development of commercial RAS projects in the US. “We are excited to have PR Aqua join the Pranger Companies,” Gabe Pranger, equity holder in the Pranger Companies, said. “Their knowledge of aquaculture systems and technology will be a tremendous benefit to our clients.”
Taking the company from good to great by attracting a world-class workforce, and keeping them, is at the core of a new role at Cermaq Canada.“Cermaq Canada has a desire to build a world class organization; we are good at what we do. We want to be great. That is done with world-class people in aquaculture,” says Shannan Brown, who was appointed to the new role of People and Culture director in October.“As the company has advanced in many areas and is now guided by a global strategy, the human resources function has advanced as well,” says Brown, who was HR manager at Cermaq Canada for 4.5 years. “The HR manager title was changed to reflect this future-focused strategy work. This strategic view is about all aspects of our employees, future candidates, too. Plus to consider the environment that our employees work in so that we have a commonly held group of values and beliefs - that is the culture part (of the title).”Brown adds that commitment to sustainable aquaculture and to First Nations is crucial for Cermaq. “In my role that commitment would include a strategy for the recruitment and retention of First Nations,” she says.
An award that champions businesses for their contribution in helping “shape Canada’s economic landscape” has named Cooke Aquaculture Inc of Blacks Harbour, New Brunswick as a finalist.The 6th Private Business Growth Award by the Canadian Chamber of Commerce and Grant Thornton LLP recognizes 10 of Canada’s best private businesses that have “completed outstanding achievements in strategic, sustainable and holistic growth.”Selected by an eight-person jury, the Top 10 Finalists were chosen based on a range of categories including innovation, market development, people and culture, strategic leadership and improvement in financial measures.“Each of the Top 10 Finalists possesses a like-minded commitment to hard work, passion, and tenacity which wholly contributes to the strength and sustainability of the Canadian economy,” said Kevin Ladner, CEO and Executive Partner, Grant Thornton. “These nominated businesses demonstrate a true devotion to the success of their local communities, which is worthy of recognition. I wish the best of luck to the Top 10 Finalists at the upcoming ceremony (on November 28).” Cooke is the only aquaculture entity and the only seafood company among the Top 10. “Celebrating our business accomplishments is important – but we are a great company because of our great people. Their hard work and dedication have made our family’s group of companies a success,” said Glenn Cooke, CEO, Cooke Aquaculture Inc.
Adrian Southern has written a how-to book for the small-scale aquaponic farmer.  Southern, who runs Raincoast Aquaponics in the Cowichan valley north of Victoria, British Columbia, has developed an aquaponics farm designed to turn a profit with one or two operators and a combined time of under 40 hours a week.  He is now imparting that knowledge to others. The Aquaponic Farmer, co-written with Whelm King, distills five years of learning from operating Raincoast Aquaponics. The book is not about adding a few tilapia below the grow table of tomato plants; rather, it is designed for small-scale, commercial operators, Southern says.He designed a custom system suited to temperate climates. “Our goal was to create a model system and assess its technical feasibility, its economic viability and prove that it works,” he says.  The cooler temperatures support the choice to raise salmonids.  “Rainbow trout fry are readily available, they thrive in cooler water and are a familiar product for my direct-sale customers,” Southern says. Nutrients from the trout support a 52-week production of leafy greens, primarily lettuce.With an investment of between $100,000 and $200,000 (USD) in a 36-by-120-ft greenhouse installation, a sole operator can produce 80,000 lettuce plants and 750 rainbow trout (weighing roughly 1kg each) per year, for an average gross return of just under $2,000 a week, Southern maintains.  Trout are housed in three 8-by-3-ft circular tanks that Southern sources from Pentair.  Plants grow in three deep water culture tray systems, each with twin 86-by-4-ft troughs that are built on-site.The 304-page book guides the reader through the process, from selecting a suitable site through to harvesting and selling the crops. Chapters cover design, and instructions on building the system, raising fish, producing plants, diseases and pests, and standard operating procedures.  There is also a chapter on writing a business plan.  “Important” boxes emphasize critical points of each chapter. Southern is developing an on-line course with his educator wife.  “I almost wish I’d left something out of the book that I could include as new material in the course,” he quips.  They are planning to offer courses at Raincoast’s facility to give students hands-on experience with an actual working system. Southern is also a consultant; he is working with system builders in British Columbia, Ontario, Washington State and Oregon. “There is definitely a future in this,” says Southern. “I don’t come close to meeting the demand for local, sustainably raised fish and greens at my local farmers market.”
Marine Harvest Canada (MHC) has appointed Dr Diane Morrison as managing director.Morrison is a Doctor of Veterinary Medicine and has 25 years’ experience in salmon production. She has led Marine Harvest Canada’s Fish Health and Food Safety Department in Western Canada for 18 years.“I am very passionate about our business, the health of both wild and farm-raised fish, and about the great team we have at Marine Harvest Canada. I am excited to share my experience and build a sustainable future together for our local communities,” said Morrison, who took over the role from Vincent Erenst in October.Morrison has been a resident of Campbell River, BC for the past 25 years. She earned her Doctor of Veterinary Medicine degree at Ontario Veterinary College and has served on multiple research teams publishing on aquaculture and wild salmon in British Columbia, said MHC.
Cooke Aquaculture has named Claire Ryan as director of public relations. Ryan has extensive experience in community relations and public engagement. She was formerly the manager of public affairs of the Canadian Automobile Association – Atlantic, and held roles with Enterprise Saint John, National Public Relations, and MT&L Public Relations Ltd. “Her background in corporate communications, community engagement, and social media strategy will support Cooke’s overall mission and values as a sustainable seafood leader,” said Joel Richardson, vice president of public relations at Cooke Aquaculture. Ryan is a local resident of St John and holds a masters degree in Communications Management from McMaster University. “Our company’s success is driven by our dynamic, highly-skilled and innovative management team, supported by dedicated employees who live in coastal communities and contribute to the local area’s economy and sense of community. Claire has a keen interest in working with our teams across the company to help share the Cooke story. We are confident that she will do a marvelous job,” said Richardson.
North Island College (NIC) in British Columbia is launching a new Aquaculture Technician certificate in January 2019. The program is designed to equip students with technical skills to work with a variety of species in BC’s growing aquaculture industry.The four-month certificate is the first of two new aquaculture offerings at NIC, developed in response to an industry call for workers with broader field skills.“We heard from industry about the need for more advanced technician training and education to fill current and projected vacancies,” said Cheryl O’Connell, NIC’s dean of trades and technical programs. “This new certificate prepares students for entry-level positions and provides an excellent foundation for further studies.”NIC has offered Level 1 Aquaculture Technician Training since 2014. The new certificate includes Technician Level 1 training, with an updated curriculum, more occupational health and safety training and the ability to ladder into BC’s first advanced production-training program, the Aquaculture Technician diploma, scheduled to begin in Fall 2019.Renowned aquaculture researcher and educator, Dr Jesse Ronquillo, developed the programs’ curriculum in consultation with the BC Shellfish Growers Association and the BC Salmon Farmers Association.“The growing interest in aquaculture around the world is creating a need for technical training and education,” said Ronquillo. “These programs prepare students for a range of industry jobs, from hatchery to farm-site work. The certificate trains students in a variety of aquaculture species including finfish, shellfish and algal production techniques.”Both aquaculture programs will take place at NIC’s Campbell River campus, now undergoing a $17.6-million expansion and renovation. "The planned facility will enable students to raise a variety of species through various development stages,” said Ronquillo.Farmed salmon is BC’s top exported agrifood and seafood commodity, contributing $1.5 billion towards the BC economy between 2013 and 2016. Geoduck clam exports rose 50 percent from 2016 to 2017 and oyster exports have increased annually since 2010, data from BC Agriculture and Seafood Statistics 2017 show.
Kansas City’s Nile Valley Aquaponics (NVA), the brainchild of urban and aquaponic farmer Dre Taylor, is a community greenhouse project that currently grows around 100,000 lbs of food per year, including tilapia.The fish are fed naturally through a patented system that converts black soldier fly larvae to fish feed.NVA is fundraising to create new facilities on the property to double food production and to create a model that can be imported to other areas.“We provide access to healthy food, and foster community and economic development in an area known as a food desert,” says Taylor. “We’re teaching people to grow their own food, to eat something that’s local and to provide jobs in the community. With the new facility, we’re trying to build a franchiseable model that can be duplicated in other cities.”Tony McGrail, project architect with design and engineering firm HOK, says he reached out to Taylor after reading about NVA and being impressed by Taylor’s story and his work.“I thought, ‘wow, this guy is really putting the world on his shoulders in a rough, disadvantaged part of town, and is seemingly succeeding,” says McGrail.HOK provided NVA with conceptual schematics and mock-ups for new facilities to be used in fundraising efforts. The design includes two greenhouses, one with fruit trees and a fishing pond, and the other for the waste-processing component. Rainwater will be collected in cisterns for various uses and electricity will be generated through a solar array and a wind turbine. A shipping container currently located on the site will be repurposed into a pop-up market to sell NVA’s produce.Once fundraising is complete and the project is ready to move forward, HOK will develop full construction and engineering documents for the project and will serve in an advisory capacity during construction.Taylor hopes that fundraising will be completed soon and the new facilities will be in operation by spring of 2019.
Norwegian company CageEye says its namesake acoustic listening device enables salmon farmers to make precise decisions in determining salmon feeding optimization and reduce feed waste as a result.The system’s latest version is adapted to bigger rearing units. CageEye has real-time and history control panel that provides a good overview of fish behavior in real time and fishing density in the chosen feeding area. As it records a history of past feeds, the farmer can track the history of the fish’s response to previous feedings.“In terms of analyzing fish feeding activity in a long-term perspective, there is really no competitor to echo sound data for understanding how the fish respond. Analysis of camera recording may of course be used, but this would be extremely tedious and the data will not be as good,” Ole Folkedal, researcher at the Institute of Marine Research in Bergen, told Aquaculture North America (ANA). Since CageEye collects data of the depth the fish reside, it can also be used in sea lice prevention, says Folkedal. “The fish show strong preferences for light and temperature and change depth accordingly. When using submerged lamps for postponing sexual maturation, the depth position of lamps can be used to attract the fish deeper, and, thus, also avoid the parasites.”
When the newly elected chief of the Wei Wai Kum First Nation in Campbell River, British Columbia spoke at a salmon farmers summit in September, he admitted he “struggled” with his decision to attend the event. The chief, Chris Roberts, withheld the “First Nations Blessing” that was to kick off the program that crisp autumn morning.
Canada’s new federal minister responsible for regulating the aquaculture industry, Jonathan Wilkinson, has spent the last 30 years working in both politics and business (see side bar). With his appointment in July as federal Minister of Fisheries, Oceans, and the Canadian Coast Guard, he heads the federal agency that oversees the aquaculture industry throughout Canada, among a host of other roles.
Cedar Crest Trout Hatcheries lies in Hanover, Ontario, Canada, at the base of the Bruce Peninsula, in the heart of Ontario’s rainbow trout (Oncorhychus mykiss) fingerling production area. This location is perfectly placed to ship fish to Cedar Crest’s primary clients on Lake Huron. In truth, Cedar Crest is four closely placed hatcheries, making Cedar Crest the largest producer of fingerlings in the province. Between the four locations, Cedar Crest produces more than seven million fingerlings each year.
Unglamorous as it may be, mortality collection, classification and analysis are an essential job at any hatchery. Often, mort picking is seen as the bottom end of the job spectrum. 
The company is building a land-based Atlantic salmon farm in a former paper mill in the state. Repurposing the paper mill has saved the company a lot of money, according to head of Business Development Ben Willaeur. “Paper-making also involves high intensity water usage and the intake and discharge saltwater so the infrastructure already exists. That reduced our costs tremendously,” Willaeur says.The farm will create 50-60 jobs directly, as well as a number of indirect jobs through construction or byproduct utilization. The facility is the first of many being planned by Whole Oceans in Maine. CEO Rob Piasio hopes the company could eventually capture 10 percent of the domestic salmon market.“We’ll achieve that goal by growing numerous farms in different locations in Maine; that will get us to 50,000 metric tons of capacity, or more,” says Willaeur. “But it’s a long-term goal. That could take 20 years, or more, but it’s ultimately something that may happen much sooner than expected.”While acknowledging that the 50K MT capacity is a very large number relative to what is currently being grown in RAS facilities within and outside the US, Willaeur believes it is something the market can bear. “There is, I think, going to be an awareness that the consumer will bring when they become more familiar with the quality that RAS fish possess in terms of their taste, but also in terms of the fact that they’re taking pressure off an endangered wild species and really have controlled food and water quality.”Market demand is promising. Whole Oceans says it has already pre-sold 100 percent of its projected inventory. Willaeur downplays competition among RAS producers; instead, he speaks highly about the work done by contemporaries such as Nordic Aquafarms and Atlantic Sapphire in this sector. He believes the market has more than enough room for everyone.“The industry is dynamic enough that we find most participants consider themselves as partners rather than competitors. Everybody wants each other to be successful. There’s a lot of knowledge-sharing in terms of the growth of the technology and the innovation that’s occurring.”That collaboration is part of why Willaeur and Piasio, both Maine natives,would like to see the state become a global hub for RAS technology. That hub would be formed both through partnerships with both the industry and academia. The knowledge base of RAS systems incorporates everything from chemistry to biology, electrical and mechanical engineering and international procurement.“There’s just a myriad of diverse centers of knowledge that we would be looking to recruit, and looking to acclimate specifically to our work. We feel that academic institutions in this state are rising to the occasion and are very interested in producing integrated academic offerings, partnering with industry partners within the state.”
Students at New Jersey’s Willingboro High School have acquired the taste for aquaponics.         Gary Nelson, program director for the school’s Making Visions Possible department, says that the students designed and developed an aquaponic system themselves. The project was driven by the desire to source pesticide-free fruits and vegetables locally. Today they grow tilapia, lettuce, kale, Swiss chard and collard greens.“There was a tremendous amount of trial and error,” says Nelson, who works with the students on the system. “We went through water leaks – we had about 70 tilapia in our 700-gallon stock tank and we came in one day and water was all over the place and the fish were hanging on by a thread. We were able to just save them.”Nelson says the students faced the challenges head on, researching plant nutrition or different plumbing systems to solve them and improve the system overall. They are developing a business plan for a community food program to sell the produce and fish. Their goal is to raise funds for a solar-powered greenhouse to work in concert with the aquaponic system.“To bring something like this to the school system is a big deal because it teaches way more than fish anatomy or even gardening. It incorporates so many different things that it can literally be any class you choose – it can be a math class, it can be a health class, it can be a science class. It’s multi-faceted,” says Nelson.
At the heart of southwestern Ontario, one crop producer has mastered the art of aquaponics, where healthy tilapia are grown alongside premium quality cannabis.  Green Relief has been growing marijuana for medicinal purposes since 2016. From the beginning, the company has made it its mission to find sustainable ways to grow their crop.“Aquaponics started for us as a small greenhouse addition to the back of our house with a self-contained system,” explains CEO Warren Bravo. “We were going to grow vegetables for our family all year round, at a greenhouse that we can walk up to.” Bravo’s 50-acre property in Flamborough, Ontario, is home to Green Relief’s 32,000-sq-ft indoor grow facility. Construction is underway for an additional 220,000-sq-ft building that’s expected to produce 45,000 kgs of cannabis annually. A third building is also part of the expansion plan, which will provide an additional 180,000 sq ft of production space for the company. Green Relief is one of at least 114 licensed cannabis producers in Canada, but its growing technique is unique in the industry. Using aquaponics technology developed with Nelson and Pade, in Montello, Wisconsin, Green Relief uses fish waste carried through a recirculating water system to deliver nutrients to the cannabis plants. Around 300 tilapia are grown in circular tanks located inside the grow room. Upon maturity, the fish are harvested and donated to local food banks.“The idea of having an aquaponics system at the house has morphed into what you see now as North America’s – or the world’s – only high-production cannabis facility using aquaponics,” Bravo states. Fish for feedPut plainly, aquaponics is a method of growing food that uses a closed-loop process that mimics the ecosystem. Green Relief’s aquaponic structure is powered by a recirculating aquaculture system containing 18,000 gallons of water continuously recycling through the system, explains Derek Bravo, operations manager at Green Relief.Fish start out in the system as fry. They stay in the nursery with young cannabis plants. As both plant and fish grow, they are transferred to the main grow room where they stay until ready for harvest, at which point they go their separate ways – the cannabis flowers go to the dry room for processing and the tilapia go into Second Harvest trucks for delivery to local food banks.All the magic happens in the grow room. Derek Bravo explains they use only organic fish feed to grow the fish. Fish waste is then produced, which flows through the tank into the clarifiers. The clarifiers are the first level of filtration, consisting of a light screen in the middle. Heavy solids then sink to the bottom of the tank, while the finer solids flow through from the clarifier into the mineralization tank to be broken down further. The water then goes into the bioreactor.“That’s where the aerobic bacteria is created with heavily oxygenated tank with a bunch of bio beads where the bacteria lives on,” Bravo explains. “Once the beads get too covered with bacteria coating, it will break off, flow into our system that attaches to one of the grow beds.” In this process, nitrification occurs and the resulting nitrate becomes nutrient for the plants. “The plants just sit on styrofoam, and they just float on the water. Their roots go down the water and uptake nutrients whenever they need them,” Bravo says. The water then flows back to the fish tank and the cycle repeats.Ecosystem approachCEO Warren Bravo notes the significant amount of research and the huge learning curve that went into the process of building Green Relief’s aquaponics facility. Bravo and Green Relief co-founder Steve LeBlanc both come from the construction industry. Their knowledge of buildings and structures only took them halfway through achieving their goal of establishing a sustainable cannabis production company that leaves as little impact on the environment as possible. The rest, they had to learn. The pair spent over two years doing research on aquaponics, speaking with known experts on aquaponics and sustainable agriculture around the world. Among them was Nick Savidov, senior research scientist of the aquaponics program at Lethbridge College in Alberta.“Aquaponics is an integrated multi-trophic production system,” explains Savidov. In aquaculture, an integrated multi-trophic system follows the concept of a natural marine ecosystem, where one species produces the waste or byproducts that become sustenance to another organism within the ecosystem. “Natural ecosystem does not have waste; everything is getting utilized, so that the waste product of one component – such as fish manure ¬– become feed stock for another component, which are beneficial microorganisms such as bacteria, fungi, protozoa and so forth. The plants are fed by the water, then the water goes back to the fish,” Savidov says. The aquaponics approach is different from the traditional monoculture approach in agriculture – such as hydroponic or soil-based crops – which have largely become unsustainable, he says. In an aquaponic system, “recirculation” is key, Savidov says. “Water becomes not just a habitat for plants, fish and the nutrients and microorganisms. Water becomes a carrier, a link that ties together all those components.”Although in its infancy, aquaponics is beginning to gain traction in the food production industry (see sidde bar: The business case for aquaponics). A recent decision by the U.S. Department of Agriculture not to reject aquaponics as an organic technology opens up a huge potential for aquaponic-based food production facilities to get certified as organic, Savidov says. He hopes Canada would follow suit.Another advantage of aquaponics over traditional methods of food production is that every component can be naturally grown without any use of chemicals or additional fertilizers. “In modern agriculture we use resources such as fertilizer. All fertilizers come from finite resources… from raw deposits which are not limitless,” Savidov notes. “What happens if we exhaust all raw deposits?”Savidov acknowledges fish feed may be the biggest cost factor in an aquaponic system, but even that, in the long run, can be addressed by a self-sustaining, advanced system that increases plant output with less amount of fish feed. The key is in the aerobic bioreactors.“Use of aerobic bioreactors allows 100 percent nutrient recycling in an aquaponic system and improves the crop output in the system,” Savidov explains.
Sometimes you can see the future by looking to the past.  Connecticut shellfish farmer Bren Smith would walk by a mural on the wall of the Madison post office that depicts farmers gathering seaweed from the beaches of Long Island Sound in the 1930s. “I didn’t make the connection until I was growing kelp myself. One of the things it was used for was fertilizer.”“The last thing I really wanted to do was grow kelp,” admits Smith, but kelp’s nature as a fast-growing crop that requires low maintenance was hard to resist. “You do almost nothing to it, just a drive-by every two weeks to be sure the gear isn’t broken,” he says.The need to generate various sources of income led Smith to adopt the IMTA model. “Every commercial fisherman (he used to be one) knows one needs a diverse source of income. I was also looking for other things to grow to use all of the water column.”  IMTA as a farming concept has been introduced in the Western world in 2004, although the process of rearing multiple fish species (polyculture) in one location is ancient; the Chinese have been doing it for ages.Smith shares with others the IMTA “gospel” but he thinks IMTA’s full name — integrated multi-trophic aquaculture — is “horrible and alienating.” “We are trying to attract people to ocean farming so we call it 3D Ocean Farming,” he says. (Dr Thierry Chopin, whose research focuses on IMTA and was instrumental in promoting the concept, says there have been over 1,300 publications on IMTA since it was introduced in the Western world in 2004, so he won’t change its name, he said at Aquaculture Canada 2018.)  Through GreenWave, a nonprofit Smith founded (see side bar), people across the US and overseas are learning about the benefits of “regenerative ocean farming.” “Shellfish like mussels taught me that we can farm to restore rather than deplete. As farmers, our crops can breathe life back into the oceans while feeding local communities,” Smith wrote on the website of a GreenWave sponsor.Tweaking IMTASmith took his cue from the oysters when he was developing his version of IMTA.  “I like growing things that don’t need to be fed and can’t swim away. With all of the things we grow we are able to do simple rope culture and that keeps the infrastructure costs down.”Without fish in the IMTA equation, this method of farming makes much more economic sense for small to medium size farmers, Smith says.  “Most IMTA starts with fish, to which other things are added. What I’ve done is I simplified it and lowered the barrier to entry by making things cheaper.”“From my 20 acre farm I harvest 10 to 30 tons of seaweed and 250,000 shellfish per acre a year. With our model, an ocean farmer can gross $300,000 a year and provide two to three full-time jobs and seven to 10 seasonal jobs,” he adds.Smith grows clams on the ocean floor at the bottom of his lease. But having his oysters buried by storm surges led him to pull them off the bottom. Oysters are in suspended trays, scallops are in lantern nets and mussels in socks all hanging from a long line.  The kelp is grown on the long lines in the winter.  While labour is the top input in this model, Smiths says it varies between crops.  “Clams just sit in the mud, we don’t cover them with nets so we lose some, but we also don’t have to do anything,” he says.  “Oysters require a fair amount of work for a good product, and scallops are just a pain.” Kelp harvest is labor-intensive.  When Aquaculture North America spoke to Smith in May, he was in the midst of harvest and watching out for the sweet spot that would allow for maximum growth. “They can double in length in May. But we have to harvest them before they start to become bio-fouled in the warmer water temperatures, or they will have to go to fertilizer.” Smith sells his harvest locally under the brand Thimble Island Ocean Farm. “Our scallops don’t grow very big adductor muscles in the lantern nets so we sell them whole to restaurants and people eat them raw like oysters.” The new kaleKelp presents a different marketing challenge.  “The problem with kelp is nobody wants to eat it,” says Smith. But significant progress is being made, he says, by marketing kelp as “the new kale,” by moving it to the center of plates, and talking about “merroir” (like “terroir” in wine industry jargon) and “arugula from the sea.”  There are high-end chefs experimenting with everything from kelp pasta to using it to flavor cocktails.  Smith says they have also had success partnering with other food processors, including one that’s making kelp-and-mushroom jerky.“I thought it would take 20 years to build a market for those specialty items, but we have back orders for half a million pounds of kelp right now,” Smith says. The other strategy was to take a page from the soy producers’ playbook.  “The soy industry got together and realized they weren’t going to get many Americans to eat soy, so they put it into everything,” Smith explains, only half joking.  “The great thing about seaweed is that it’s a human and animal food, it goes into cosmetics, pharmaceuticals, fertilizer and biofuels.  We can stuff it into everything.“We’ve had a lot of success with it, our challenge now is permitting and developing hatcheries fast enough to meet the demand.”Smith is now exploring ways to stabilize output from a given lease using remote sensing.  “As an ocean farmer, your soil turns over a thousand times a day. Some years we get kelp that is three feet long, some years it is 20 feet. I need to know about the current, light penetration, and where the nutrients are in the water column. Then I can go out and raise or lower the farm to where those nutrients are.”     Side BarCultivating underwater farmersGreenWave is a farmer-run organization that helps attract, educate and support new shellfish farmers.  “My first goal is to create jobs,” says Bren Smith, the organization’s founder and executive director.  He knows from experience that new farmers need all the help they could get. “I was a terrible at first, I killed most of them,” says Smith, recalling his first foray into shellfish farming. The nonprofit helps farmers with site selection and the permitting that will get them started. They build hatcheries for seed and provide a distribution hub and market research. “The US simply does not have a functioning government to do this kind of training and industry development, like you would find, say, in South Korea,” says Smith. “We decided we would do it ourselves.”  Training is free, thanks to generous sponsors like outdoors clothing company Patagonia.  GreenWave has supported new farmers in New England and Alaska and is moving into California. “We’ve had requests from virtually every coastal state and over 20 other countries,” says Smith.  “We have always been open source but we have a grant now to put all of our material into online learning, which we hope to have up by this fall.”   GreenWave’s program has resulted in 17 farm startups, which are all currently operating. Eight farmers are currently enrolled in the FIT (Farmer-In-Training) program, and 10 more are expected.
When two million pounds of farmed fish perished in British Columbia because of a toxic algal bloom in 2015, crew from West Coast Reduction Ltd (WCR) received moved the volume to its the company’s Nanaimo facility. But the work that WCR professionals perform is clearly no ordinary cleanup. It is a delicate job involving microbes and pathogens from dead animals that could seep into the environment if not handled well.“We have all the logistics and Canadian Food Inspection Agency (CFIA)-certified facility in place that we can take those volumes, render them, sterilize them and make a value-added product, with no fear of getting those pathogens out in the open. It is similar to the services we provide to the livestock processing industries,” Ridley Bestwick, WCR’s chief financial officer, tells Aquaculture North America (ANA).The vital work that rendering facilities such as WCR perform often goes unnoticed, but their services are critical to helping sustain the agriculture/aquaculture industry, the food services sector, and the environment.WCR is Western Canada’s largest independent rendering facility. It recycles about 450,000 tonnes of food byproducts, including beef, pork, poultry and fish, in Western Canada annually. Of this volume, aquaculture byproducts — heads, fins, tails and guts — account for between 5,000 to 10,000 tonnes a year.Marine Harvest Canada (MHC) accounts foras a large part of WCR’s Aquaculture aquaculture volume along with Brown’s Bay Packing Company, which who is its longest standing aquaculture supplier. WCR also services Cermac and others on the BC coast.. MHC produces three to four trailers of fish waste from its Port Hardy processing plant each week and that waste is trucked down to WCR’s Vancouver plant daily or every second day, depending on the volume.The greener optionBestwick tells ANA that rendering is a lower-cost solution for fish farmers and processors dealing with aquaculture byproducts than industrial composting, and also a more environment-friendly option.“Our plant here in the Port of Vancouver takes the equivalent of 150,000 cars off the road each year in green-house gas reduction. In BC, there is no enclosed composting facility where the gases from composting are captured, so those materials, if they went to compost, would create gases. Composting facilities have a negative carbon footprint, we have a positive carbon footprint,” he says.Rendering is also “the best way to clean the product,” adds Doug Davidson, WCR’s operations manager. “Animal byproducts are cooked at high temperature during rendering so microbes and pathogens, or any viral-type issues, are sterilized in the process,” he says.Aquaculture’s shareBestwick and Davidson see aquaculture’s share in WCR’s business growing alongside aquaculture. Today, the company provides collection services to 50-60 percent of aquaculture businesses in British Columbia.The supply of fresh raw product and how quickly it is rendered is crucial in producing quality fish oils and protein meals. “For some of the businesses that are far away and have small volumes of byproducts, composting is the closest and easiest fix because WCR can’t collect those volumes fresh enough to get to rendering,” says Davidson.He explains that fish byproducts produce fishmeal with a protein content of between 64 to 70 percent, and the fresher byproducts are when rendered, the more of that protein is retained. “So if something is left for two days (because of travel time) before it is rendered, it will lose 1 or 2 percent of those proteins.”But Davidson sees the share of those small farms in WCR’s business growing as the aquaculture industry grows. “As their business and volumes grow, our service to them becomes more economical,” he says.Bestwick adds: “We are supporting the biggest players of aquaculture and we hope to support the small players as well. In the near future we hope to provide options to supply the service to the more remote locations.”ByproductsWCR not only serves the industry in terms of helping dispose its byproducts but also in recycling that waste into valuable feed ingredients.The aquaculture industry is the company’s biggest customer for proteins produced from rendering poultry byproducts. “We sell our finished products to the likes of Skretting and EWOS, who blend those proteins into feeds,” says Bestwick.The biggest customer for the fish meals produced out of rendered fish waste is the pet food industry.An evolving industrySince the company’s start in 1964, Bestwick says the rendering industry has become more regulated, customers’ demands have become more specialized, and competition for animal byproducts has increased because of the growing movement toward composting and other green energy initiatives.“In the last 50 years, scrutiny over the process and products in our industry has increased; biosecurity and food safety have become top priorities,” says Bestwick, who noted that CFIA audits and issues industry permits.Davidson says the basics of rendering have also become much more refined over the years; centrifuge technology and polishing are now the norm, along with raw materials segregation to produce higher quality ingredients. “When I started in 1978, everything was boiled in one pot,” he recalls. Clearly, specialization helps answer the customers’ increasing demand for single-ingredient feed ingredients.Over the last 10 years, Bestwick says the company has seen its supply of raw materials decline because they are being diverted into other recycling initiatives — for example, composting and biogas — that he believes is not as sustainable as rendering. The organic landfill ban in Greater Vancouver has also contributed to the decline in the supply of byproducts for rendering, he says.“Organics (food scraps) cannot go into landfill anymore in Greater Vancouver.   We don’t render green vegetable material — it’s better for that to go to composting or biogas or landfill — but the organic landfill ban created an opportunity for waste haulers to also take fish and meat material from our suppliers. I would say we’ve seen a 5- to 10-percent drop in volumes of byproducts that we pick up from butchers and supermarkets,” he adds.Bestwick acknowledges that while disposing waste via composting is well intentioned, he says rendering is the most sustainable solution for recycling meat and fish byproducts. “Compared to composting, rendering reduces greenhouse gas emissions by 90 percent and adds five times more value to the local economy,” says Bestwickhe says.He regrets that this fact is lost on most consumers because “the fact is, in past years we did not market what we were doing,” he says. But now, the company is increasing its visibility in the media and the community to promote a better understanding of the company’s work.“We are communicating our role, we meet with government officials, we go to conferences and trade shows, we advertise, sponsor events, communicate with the media, talk to consumers and regulators. We get the message out about the contribution we make to the sustainability of aquaculture and agriculture,” says Bestwick.In 2016, the BC Food Producers Association awarded WCR with its the Sustainability Award, a proof that finally, the company is succeeding in getting the word out, and its contribution to the environment, economy and people of BC is recognized.This feature story was originally published in Aquaculture North America's September/October 2017 print edition.
Ingenious companies around the world are accelerating innovations at an unprecedented pace to make fish farming more sustainable. One of them is AgriMarine TechnoIogies Inc (ATI), a developer of marine aquaculture containment systems. ATI is a subsidiary of AgriMarine Holdings Inc, a portfolio company of Toronto-based Dundee Corporation.The British Columbia company is busier than usual these days, says AgriMarine Director Sean Wilton. “We have lately been working on a lot of closed containment systems because it’s starting to look like there’s a sweet spot in the industry where you get a crossover of functional benefits with cost. The cost of (floating) containment is obviously higher than net pens but lower than in land-based,” he told participants at the Aquaculture Innovation Workshop in November.AgriMarine has been at the forefront of salmonid closed containment aquaculture for nearly two decades and pioneered the development of marine-grade floating closed containment systems for over 10 years.         In 2014, it formed ATI to focus on delivering its market-ready sustainable technology solutions to clients around the world.ATI has less than 10 employees, which is relatively small in the world of technology innovators. But while the competition has started getting bigger — in both the size of their deployed systems and their engineering and R&D budgets — Wilton believes “bigger is not always better.”The greatest challenge for any smaller innovator, he says, is to stay relevant once they have proven the value of their technology to larger players in the industry.“We are meeting this challenge by leveraging both the depth of our practical experience and our flexibility and responsiveness that we enjoy being a smaller private company,” Wilton says. The company’s marine containment systems offer solutions for sea lice, toxic algae blooms, low dissolved oxygen water and high temperatures.“Our floating closed containment technologies, both tanks and raceways, address all of these issues in the same fundamental manner. We use solid or impermeable wall structures in the rearing containment vessels to isolate the husbandry environment from the ambient surface-water conditions, and draw cleaner, cooler water largely free of algae and sea lice from depth to supply the fish with as close to ideal culture conditions as are available,” he told Aquaculture North America (ANA).Real-world resultsIn 2012, AgriMarine acquired West Coast Fishculture (Lois Lake) Ltd, a finfish farm in Powell River, BC, which produces 1,200 MT of steelhead annually. Starting out as a net-pen operation, it added closed containment because high water temperatures in the summer led to high mortality rates. There are currently six tanks deployed, displacing approximately 18,000 cubic meters of water and accounts for three quarters of the farm's standing biomass. Plans are underway to transition fully to closed containment.AgriMarine’s floating, semi-closed containment systems optimize the rearing environment for the steelhead, says Wilton. “Having our own farm and our own engineering group in-house allows us to learn and live what it takes to use floating closed containment in a real-world commercial environment. We have direct feedback from end users to designers and back again, and this is giving us a very rapidly developing practical knowledge base of the technology and its use,” he says.He adds that sea lice are not an issue in the steelhead farm. “There are no sea lice in the lake. Our challenge is that it gets too warm in the summer. Key for us is the ability to isolate culture temperature from the ambient water around us so we bring cooler water up from depth of about 30 meters below our tanks.”This allows water in the tank to be maintained at 13 to 14˚C whereas the surface water temperature is as high as 26.5 ˚C outside the tanks. As the farm transitions to all contained systems, the tanks are operated alongside nets, allowing them to collect comparative data. Traditionally, net pens in freshwater lakes see marked spikes in mortality levels during the summer. In contrast, AgriMarine's tanks and raceways have seen greatly reduced mortality rates that are in line with industry norms at saltwater marine sites.Two tanks were delivered to a Norwegian specialist post-smolt producer over 2016/2017. The client has completed two crop cycles and reports excellent health and accelerated growth with both cohorts reaching target weight seven weeks ahead of schedule.The company's tanks are certified to the Norwegian NS9415:2009 construction standard — a very rigorous set of technical standards and quality control procedures enforced for all marine equipment in Norway.“We believe we were first to achieve NS9415 certification for our floating tank technology two years ago and in some ways are still leading as we have more commercial production cycles through our technology than anyone we know of,” Wilton added."Combined with government incentives for Green Sites and other R&D support measures in other countries, some competitors have taken the lead in deployment footprint and we have to keep innovating to make sure those large well-funded engineering teams don’t catch up or pass us technologically as well,” he says.
Atlantic Sapphire is well into the construction of the Miami version of their Bluehouse – an all-in-one aquaculture production facility that houses every stage, from hatching broodstock to processing of the harvest. As CEO Johan Andreassen watches his vision for an American Bluehouse take shape with each passing day, he keeps his eyes on a larger prize – a giant US market that imports the vast majority of its consumed salmon. “I think the consumption of salmon here can double over the next 10 years, if done properly,” says Andreassen.The company is preparing for an increased demand for salmon. It plans to exponentially expand the Miami Bluehouse in size and scope as it moves through different phases. Phase one is due for completion by the yearend and will see its first harvest – 9,484 metric tons head-on and gutted (MT HOG) salmon – by the second quarter of 2020. Phase two will add 20,000 MT HOG by 2023. Phase three will add another 60,000 MT, for a total production of nearly 90,000 MT HOG, by 2026. The initial 384,000-square-foot facility in phase one will grow to four million square feet by phase three. The 100 direct jobs and economic impact equivalent of 2,700 jobs of phase one is predicted to grow to 21,000 indirect jobs by phase three.While the idea of including every step of the seafood value chain under one roof is unique, it’s not a new idea, says Andreassen. “If you look at everything from broodstock through hatch, through parr, pre-smolt, smolt, post-smolt, what we are doing here is exactly the same as the entire salmon industry. Then we grow out the fish to five kilos, that’s basically what we are innovating and what we are doing differently from anybody else. Once the fish is five kilos, it goes into a slaughterhouse and a processing facility that’s also exactly the same technology and concept that is widely used throughout the industry.”Risk factorsBy housing the supply chain in one facility, the product can reach the market quicker and fresher. But this also means much more planning on the front end for Atlantic Sapphire to avoid potential issues. While recirculating aquaculture systems (RAS) are much more secure and have a smaller risk of virus issues than other facilities, Andreassen states emphatically “nothing is virus-proof.” The original Bluehouse in Denmark served as a dry run where most of the kinks in this type of facility were ironed out. In 2012, there was a furunculosis bacteria outbreak. And once such a virus gets into a recirculating system, it’s a significant problem to get rid of it because the water keeps recirculating. That’s why it’s so important to have protocols and protections in place to begin with.“You have to have a very, very thorough pre-treatment of the water, and high hygienic standards, and procedures on all the stuff that you’re bringing into the farm.  Most of the people that are producing fish on land, they’re using water from a pipe into the ocean or they’re piping water from rivers or streams and those are not biosecure. You have fish, you have algae and you have living organisms in the intake water. In the case of South Florida, we’re using a deep-laying artesian aquifer that’s 2,000 feet below, where the water is completely biosecure. So that’s a huge edge that we have here.”To deal with the furunculous is issue in Denmark and avoid such issues in Miami, Atlantic Sapphire designed a new water treatment system with a double firewall for pathogens, and improved their bio security routines. Another risk factor, for any farming situation, is hydrogen sulfide intoxication, which the Danish Bluehouse experienced last year. In response to that, the company updated the design of their bio filters, developed a new sensor to measure H₂S and made changes across the system to prevent sedimentation.Due to such intense precautionary measures that are required, some larger salmon farmers do not feel that RAS technology is ready yet to operate in larger scale production. Andreassen feels that such concerns are unwarranted.“Broodstock salmon have been raised land-based for 20 years, right? It’s not a question if it’s feasible to get the salmon to grow to a large size in a land-based environment. Obviously, when you do commercial food fish production, you have higher densities and you need to dimension the technology accordingly, so it can keep a higher volume of game per cubic meter of tank volume.”No matter what the challenges, Andreassen feels it will be worth the benefits that their approach will bring to aquaculture production. Citing how net-pen farming was recently banned in Washington State, for example, he notes that the Bluehouse concept addresses all of the issues associated with net-pen salmon farming, including microplastics. “I think microplastic is going to be one of the largest [problems]. I call it the next CO₂.”More than that, however, is the fact that consumers are becoming more concerned about the origins of their food and seeing how it comes to their plate. Having the entire supply chain under one roof means that question is much more easily answered.“I also think that once we have ‘Product of the United States’ [label] on our products, it will appeal more to a lot of consumer groups here,” says Andreassen. “We have a very open philosophy. We want to create trust amongst the consumers so we have designed our farm in a way we can have tours. People can see exactly how the fish are being raised so we can create that confidence that what we’re doing is good both for the fish, for the environment and for the consumer.”
Whole Oceans is building a land-based Atlantic salmon farm in a former paper mill in the state. Repurposing the paper mill has saved the company a lot of money, according to head of Business Development Ben Willaeur. “Paper-making also involves high intensity water usage and the intake and discharge saltwater so the infrastructure already exists. That reduced our costs tremendously,” Willaeur says.The farm will create 50-60 jobs directly, as well as a number of indirect jobs through construction or byproduct utilization. The facility is the first of many being planned by Whole Oceans in Maine. CEO Rob Piasio hopes the company could eventually capture 10 percent of the domestic salmon market.“We’ll achieve that goal by growing numerous farms in different locations in Maine; that will get us to 50,000 metric tons of capacity, or more,” says Willaeur. “But it’s a long-term goal. That could take 20 years, or more, but it’s ultimately something that may happen much sooner than expected.”While acknowledging that the 50K MT capacity is a very large number relative to what is currently being grown in RAS facilities within and outside the US, Willaeur believes it is something the market can bear. “There is, I think, going to be an awareness that the consumer will bring when they become more familiar with the quality that RAS fish possess in terms of their taste, but also in terms of the fact that they’re taking pressure off an endangered wild species and really have controlled food and water quality.”Market demand is promising. Whole Oceans says it has already pre-sold 100 percent of its projected inventory. Willaeur downplays competition among RAS producers; instead, he speaks highly about the work done by contemporaries such as Nordic Aquafarms and Atlantic Sapphire in this sector. He believes the market has more than enough room for everyone.“The industry is dynamic enough that we find most participants consider themselves as partners rather than competitors. Everybody wants each other to be successful. There’s a lot of knowledge-sharing in terms of the growth of the technology and the innovation that’s occurring.”That collaboration is part of why Willaeur and Piasio, both Maine natives,would like to see the state become a global hub for RAS technology. That hub would be formed both through partnerships with both the industry and academia. The knowledge base of RAS systems incorporates everything from chemistry to biology, electrical and mechanical engineering and international procurement.“There’s just a myriad of diverse centers of knowledge that we would be looking to recruit, and looking to acclimate specifically to our work. We feel that academic institutions in this state are rising to the occasion and are very interested in producing integrated academic offerings, partnering with industry partners within the state.”

Subscription Centre

Most Popular

Latest Events

2019 Seafarmers Conference and Trade Show
Thu Jan 24, 2019 @ 8:00am - 05:00pm
2019 Ohio Aquaculture Association Conference
Fri Jan 25, 2019 @ 8:00am - 05:00pm
2019 Catfish Farmers of America Annual Convention
Thu Feb 21, 2019 @ 8:00am - 05:00pm
AQUACULTURE 2019
Thu Mar 07, 2019 @ 8:00am - 05:00pm
NC Aquaculture Development Conference
Thu Mar 28, 2019 @ 8:00am - 05:00pm
Aquaculture Canada 2019
Sun May 05, 2019 @ 8:00am - 05:00pm

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.