Research
Humane production practices can play a key role in expanding the market for farmed fish and seafood in the US but it is vital that consumers are aware of them, says a study.

“Adopting humane practices in aquaculture and avoiding the use of antibiotics directly addresses consumer concerns about eating more fish and seafood. Humane slaughter practices may even make farmed fish and seafood more attractive than wild-caught choices,” says Arlin Wasserman of food industry consultant Changing Tastes, which co-authored the study with market research firm Datassential.

The study, Humane Aquaculture: Opportunities on the Plate, says humane production practices influence the choices of both the US consumer and also individuals responsible for menu and purchasing decisions in the US foodservice industry.

The study found that half of consumers and half of decision makers on what goes on the menu are more likely to purchase fish and seafood that is humanely harvested. More than half of all consumers and decision makers also believe that humanely produced fish and seafood is likely to be higher quality, taste better and have better texture.

“Increasing the attractiveness of farmed fish and seafood can create meaningful opportunities over the next several years,” says Wasserman.   

In an earlier study, Changing Tastes found that US consumers are on trend to reduce about 20 percent of beef consumption by 2025 because of animal welfare issues and antibiotic use. They plan to replace it with fish and seafood.

“US consumers now have the same concerns about eating fish and seafood, probably because of what they know about meat and poultry,”  says Marie Molde of Datassential.

Here are the other findings of The Humane Aquaculture study:

•    US consumers and decision makers are most aware and concerned about live slaughter and antibiotic use for both wild capture and farmed fish
•    Consumers are much less aware of other production practices, like stunning, transport, and clipping. Consumer and operator concern about humane treatment increases once they become aware of these practices

“While adopting humane practices and eliminating antibiotic use can improve the US market for fish and seafood, not making improvements may pose a risk to the industry’s reputation and the appeal of farmed fish and seafood,” Wasserman added.
Japanese researchers accomplished the complete cycle of culturing eels for the first time in the world in 2010 and now they're making efforts to make the technology commercially viable.

To put the technology to commercial use, scientists at the Research Center for Self-Sustained Eel Culture in Japan are looking into whether artificially developed young eels, known as elvers, can be raised to adulthood in farming pools just as in ordinary culturing methods where caught juvenile eels are raised in pools, reported The Asahi Shimbun.

They distributed a total of 300 elvers to two private farming companies, where they will be raised under different conditions until they grow enough to be shipped.

“Through the commercial farmers’ pool cultivation processes, we will see what kind of challenges remain in connection with eels’ food, the farming environment and other factors,” Keisuke Yamano, 54, director of the center, was quoted as saying.
A new study focused on Sydney rock oysters has found that the oysters are getting smaller due to coastal acidification.

A Natural Environment Research Council (NERC) study carried out by Scottish and Australian scientists at two commercial oyster farms in Wallis Lake and Post Stephens, both in the mid-north coast of New South Wales, confirmed that the oysters’ diminishing size and falling population is due to acidification from land and sea sources.

While the Sydney rock oyster research project focused on Australian aquaculture, lead author Dr Susan Fitzer warns that seafood lovers around the globe could begin to find smaller and smaller oysters on their plates because of the increasing acidity of seawater.

“The first thing consumers may notice is smaller oysters, mussels and other molluscs on their plates, but if ocean acidification and coastal acidification are exacerbated by future climate change and sea level rise, this could have a huge impact on commercial aquaculture around the world,” said Fitrzer, a NERC Independent Research Fellow at the University of Stirling in Scotland.

Increasing amounts of carbon dioxide (CO2) in the atmosphere from fossil fuel combustion, land-use change and other human activities result in increased CO2 being absorbed by the ocean.  That combination of CO2 with seawater makes the water more acidic, said another study, The US West Coast Shellfish Industry’s Perception of and Response to Ocean Acidification.
The USDA is funding a study that seeks to find out what causes Vibrio levels to rise in farmed oysters, a bacteria that causes foodborne illnesses in people who eat raw or undercooked shellfish.

Dr Bill Walton of Auburn University will focus his study on oysters raised using off-bottom farming technique. The technique involves raising the baskets of oysters from the water once a week to air-dry them to prevent barnacles and other invasive species from attaching themselves to the oysters. Walton will find out whether an oyster farm’s geographic location, handling practices, and choice of equipment affect Vibrio levels in these oysters.

“Through his project, Walton should generate valuable data for Gulf Coast oyster farmers, who focus on producing exceptional oysters for high-end markets, such as upscale restaurants that offer the farmed bivalve mollusks on the half shell,” Auburn University said in a press release.

The USDA has given more than $450,000 for the three-year research project.

Researchers at the University of Stirling in Scotland have launched a study to look into the effects of a camelina-oil-based diet on farmed Atlantic salmon.

The farmed salmon will be fed a new feed solution that contains oil extracted from camelina crop that was genetically modified make health-beneficial Omega-3 fish oils.

Current industry practice involves feeding farmed fish with feed containing marine fish oil, sourced from the sea, and vegetable oil. Supply from the wild fisheries is, however, unsustainable.

The new study will determine if Omega-3 fish oils coming from the GM camelina plant will be a worthwhile substitute. The researchers will compare the performance of the fish fed the new feed solution in terms of weight and growth of the fish, with farmed salmon fed a standard diet.  They will also compare their tissue and molecular samples.

Plant scientist Professor Johnathan Napier, who developed the GM plants at Rothamsted Research, and fish nutritionist Professor Douglas Tocher, of Stirling’s Institute of Aquaculture, will jointly lead the study. Dr Monica Betancor, a Research Fellow at Stirling, will also play a crucial role by checking on the health of the fish and collecting data.

The potential for using Camelina sativa as a substitute for fish oils and fishmeal in aquaculture feeds has been explored in recent years. In April 2017, the Canadian Food Inspection Agency approved mechanically extracted camelina oil for use as a feed ingredient for farmed salmon and trout.
A startup is developing fish feed ingredients derived from black soldier fly (BSF) that will not only provide fish with sustenance but also boost their health and overall wellbeing.

Entomics Biosystems Ltd of Cambridgeshire, England says merely drying insects (in this case BSF) and milling them into powder misses many of their potential nutritional, health and wellbeing benefits. A proprietary bioprocessing technique that Entomics developed, which it calls "metamorphosis," boosts the nutritional and functional benefits of such insect-derived feeds.

"There are several benefits to this process," explains Miha Pipan, Chief Scientific Officer and company co-founder, in an article published in the University of Cambridge website. Benefits range "from affecting the gut's microbiome and trying to preserve a healthier bacterial community there, to training immune systems to make livestock more resistant to disease challenges and at the same time reduce the need for veterinary medicines, antibiotics and vaccines.”

“We are currently focusing our efforts on developing functional insect meals for Atlantic salmon (Salmo salar), in particular in our meals' ability to stimulate salmonid immune system strengthening and overall wellbeing,” said the Entomics team, whose members are University of Cambridge graduates.

They are currently working with partners including the University of Stirling to validate and test their products in the field.

Entomics CEO and co-founder Matt McLaren noted how the world is looking for more sustainable sources of feed. “I think increasingly there's a recognition that it's not just about basic nutrition, but it's about overall health," he says.

"We're trying to take a promising, sustainable ingredient of the future – these insect-derived feeds – and trying to add a bit of biotechnology or science focus to it, to really enhance what the effect is in the end application and reduce reliance on traditional antibiotics and veterinary medicines."

There are several efforts currently looking into developing fish feed out of BSF because fish feed derived from fishmeal is deemed unsustainable.

Financial support for projects that improve fishing and farming systems globally is available from Sea Pact, an innovative alliance of seafood industry leaders.

The group said projects that are in line with Sea Pact’s mission and fall within the following 12 broad categories are prime for consideration:

Gear or Farm Improvements
Species Research and Data Collection
Research to Improve Farming Practices
Fisheries Management
Regional Aquaculture Management
Technology
Fishery Habitat Restoration
Wild Stock Enhancement
Fisheries Conservation
Fisheries Improvement Projects
Aquaculture Improvement Projects
Communication/Education

“Preferential consideration” will also be given to projects in the areas of:

•    social responsibility
•    aquaculture
•    fisheries management
•    traceability
•    special species of interest: squid
•    special regional area of interest: Great Lakes freshwater fisheries

Initial Letters of Interest from those who want to apply for funding are due by 20 August 2018. Select organizations will be asked to submit full project proposals around mid-September, with Sea Pact aiming to announce its grant recipients in late 2018.

Application guidelines can be found here.


Farmed salmon could be contaminated with synthetic flame retardants called polybrominated diphenyl ethers (PBDEs) if their feed is sourced from regions with little or no environmental regulations, suggests a new study, but is it a reason to avoid farmed salmon altogether?

A University of Pittsburgh study led by Dr Carla Ng, assistant professor of civil and environmental engineering at the Swanson School of Engineering, tracked the presence of PBDEs in farmed salmon.

Despite having been banned in the United States and much of Europe in 2004 because of environmental and public health concerns, PBDEs continue to be released into the environment from products manufactured before the ban of PBDEs, the study says.

“They enter the air and water and can accumulate in prey fish which are then used in the manufacture of feed ingredients,” Ng explains to Aquaculture North America (ANA).

If the exact location of the catch used as feed ingredients is unknown and/or the materials have not been tested for the presence of the pollutants, it can be difficult to tell ahead of time which animal-derived feed ingredients contain PBDEs, Ng acknowledges. But the study noted that PBDEs are particularly dense in areas such as China, Thailand, and Vietnam, countries that process a lot of electronic waste and lack rigorous regulation of their recycling industries.

Dr Neil Auchterlonie, Technical Director at IFFO, the marine ingredients organization, recognized the presence of these chemicals in “extremely small (amounts) and in generally declining concentrations.”

In deciding whether this means we should stop eating farmed salmon, Auchterlonie tells ANA: “One of the facets of the continual development of analytical technology is the identification of some of these compounds in ever-smaller concentrations. Those results are often so small that they are confusing when it comes to the interpretation of risk. That risk is important to bear in mind when taken into account with the noted benefits of consuming seafood.”

He adds that it is also important to recognize that these materials are found throughout the environment, not just in seafood. In fact, synthetic flame-retardants are everywhere. “As well as being present in the aquatic environment, PBDEs are present in the atmosphere, and in dust, which can also be sources of exposure,” he says.

Still, the risk to human health appears to be minute. A report from the Norwegian Scientific Committee for Food Safety, which covered an extensive overview of contaminants including PBDEs, concluded that the risk of adverse health effects due to PBDEs is low.

Animal nutrition specialists and fish feed manufacturers contacted for comment did not respond by our deadline.



A research project that explores the use of kelp perch and pile perch as means to control sea lice infestations in farmed Atlantic salmon in British Columbia has received additional funding from Sea Pact.
YouTube videos come in handy for professional development or for anyone simply interested about learning more about fish farming.

You want this person to listen to you. But you know that if he would, he might only give you very short time and, even then, there are other people lining up to talk to him as well.
This could very well be the same case whenever you upload an extension video on sharing sites such as YouTube.

So how do you seize the moment?

“Make sure that you have a quality opening and get into the meat of the material quickly,” Dr David Cline, an extension aquaculturist at Auburn University in Alabama, told Aquaculture North America (ANA).
Cline is behind Aquaculture Education and More channel on YouTube, which he started in 2013. His most popular video is on in-pond raceways, which has been viewed 120,000 times. Educational videos on YouTube have an average of 4,872 views.

“A good opening sequence is okay as long as it is visually compelling and high quality,” he continued.  “Use good visuals early.” Interesting photos, an interview, good graphics always help.
Thirty seconds is all it takes for viewers to decide if a video suits their needs. And even less if there are other videos available online on the topic. “I have seen topics that in some videos are covered in one minute and the same topic in another takes five minutes or more.  Which would you rather watch?,” he asked.

Pace is another important element. “Don’t stay on the same picture or  scene for more than 10 to 15 seconds,” he said.  “Try to think like a director. The next time you watch a TV show start counting each time the shot changes. You will be surprised how few times you get to 10.”

On top of the education component, the video must also be entertaining.  Otherwise, viewers would most likely move on to something else.  “A video is sort of an exchange. I give you my time to watch the video and I want something in return,” he said. “If the content is not what I want or is boring I feel like the video has stolen my time from me.”

Selecting topics depend on your passion, a topic you are currently working on, or a story that you want to tell. It could also be about a question you have been asked several times before or just simply taking advantage of an opportunity. Examples, he says, are the harvest of a big pond, or a feeding frenzy.  “It something that is interesting but is not necessarily a full-blown idea or story.”
Efforts to combat sea lice infestations through natural means have advanced with the first spawning of farmed ballan wrasse in captivity.

Wild ballan wrasse has been used in salmon farms in Scotland for years as a non-chemical way of controlling sea lice infestations, but reliance on wild catch is unsustainable.

The milestone in the culture of the so-called “cleaner fish” has been reached at a hatchery in Machrihanish, Scotland, which is a joint venture between Marine Harvest and Scottish Sea Farms.

Although the wrasse produced at the hatchery will go to the companies’ salmon farms, the industry will benefit from the research. “The research we have done here is for everybody. We have close links with Norway and other hatcheries in Scotland and the information can be disseminated all around the industry. It is a joint industry project and we welcome the opportunity, if need be, to supply larvae to hatcheries,” says hatchery manager Paul Featherstone.

There are plans to expand the existing facility over the next few years, and the expansion could enable the hatchery to produce 1.5 to 2 million wrasse annually, says Featherstone.

“This is a total win-win situation,” says John Rea, director of Scottish Sea Farms, in a film about the role of wrasse in salmon aquaculture. “Our fish are better off by having this partner in their nets alongside them. It means we have a much lower environmental footprint than we’d otherwise have; the medicine bill is reduced. It makes salmon more suitable.”



Researcher suggests noise pollution could affect reproductive behavior and stress levels of fish
Massachusetts-based biotech company KnipBio has been awarded a grant to study how changes in diet can alleviate enteritis and other diseases in aquaculture.

The company is known for its fishmeal ingredient called KnipBio Meal (KBM), which is derived from microbes instead of wild-caught fish or agricultural crops.

Enteritis is a common diet-related disease in farm-raised carnivorous fish that can lead to slower growth and increased mortality. It is estimated this disease costs the aquaculture industry more than $1 billion per year.

Preliminary feed trials have consistently found that fish and shrimp fed KnipBio Meal experience improved gut health, lower rates of enteritis, and reduced mortality levels compared to populations raised on standard industry diets. The goal of the grant is to study the mechanism by which KBM acts as a prebiotic to affect gut health of rainbow trout and identify the specific components in KnipBio Meal responsible for this effect. It will be conducted over the course of one year and, if successful, may lead to additional funding to commercialize the findings.

The grant was from Phase I Small Business Innovation Research (SBIR) grant by the National Science Foundation.
Do wild salmon interact with farmed salmon? If so, how often?  These are just some of the questions that a new project hopes to answer to determine why wild salmon populations are declining.

The $500,000 study launched by New Brunswick’s Department of Fisheries and Oceans is in cooperation with the aquaculture industry. It involves establishing 24 receiver sites on Passamaquoddy Bay and the river system. Sixty young salmon were tagged in the river system and then released. Those tags trip a sensor in the receivers when the fish swim within range. That information will inform scientists whether wild salmon are in fact interacting with farmed salmon in open-net pens and how often.

“There are concerns about the potential transfer of disease from wild salmon to aquaculture, but also the potential for transfer of disease from aquaculture to wild salmon,” DFO researcher Marc Trudel told Global News.

With this being a pilot project, it’s not known how long it will take to gather the needed information, or how that data may shape future policies, Trudel added.
First wine, now whisky.

A startup that’s developing aquaculture feed made with byproducts from the whisky distilling process has attracted roughly $671,600 (£500,000) in investment.

The company, MiAlgae, uses by-products from the distilling process to grow Omega 3-rich algae for feeding farmed salmon.

 Douglas Martin founded the company while a masters student at the University of Edinburgh in 2015-16. He said he wanted to revolutionize the animal and fish feed industries with microalgae that come from whisky.

The investment, in equal shares from Equity Gap, the Scottish Investment Bank, the investment arm of Scotland’s enterprise agencies, and the University’s venture fund Old College Capital, will enable the company to expand its team and build a pilot plant for its technology at a whisky distillery.

"This investment will fund the initial scale-up steps and de-risk our commercial facility. It certainly sets us on track to achieve our ambitions," Martin said.

Earlier, in Australia, an aquaculture feed made with grape marc – skins, pulp, seeds, and stems left over after wine is made – has shown promising results in lab trials.
Page 1 of 8

Subscription Centre

Most Popular

Latest Events

Offshore Mariculture Conference
Wed Oct 17, 2018 @ 8:00am - 05:00pm
Laqua 18
Tue Oct 23, 2018 @ 8:00am - 05:00pm
Northwest Fish Culture Conference
Tue Dec 04, 2018 @ 8:00am - 05:00pm
2018 Aquaculture Innovation Workshop
Tue Dec 04, 2018 @ 8:00am - 05:00pm

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.